Phần nguyên của số thực \(x\) là số nguyên lớn nhất không vượt quá \(x\), kí hiệu là \(\left[ x \right]\). Chẳng hạn \(\left[ {1,2\left] { = 1;} \right[ - 2,7} \right] = - 3\).
Tổng các phần nguyên của số \(\sqrt k \) với \(k\) là số tự nhiên và \(k \in \left[ {1;24} \right]\) bằng
Quảng cáo
Trả lời:
Ta có:
\(S = \sum\limits_{k = 1}^{24} {[\sqrt k ] = [\sqrt 1 ] + [\sqrt 2 ] + [\sqrt 3 ] + [\sqrt 4 ] + \ldots + [\sqrt 8 ] + [\sqrt 9 ] + \ldots + [\sqrt {15} ] + [\sqrt {16} ] + \ldots + [\sqrt {23} ] + [\sqrt {24} ]} \)
\( \Leftrightarrow S = 1 + 1 + 1 + 2 + \ldots + 2 + 3 + \ldots + 3 + 4 + \ldots + 4 + 4\)
\( \Leftrightarrow S = 3.1 + 5.2 + 7.3 + 9.4 = 70\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
\(\forall n \in {\mathbb{N}^{\rm{*}}}\) ta có:
+ Với \({u_n} = {n^2}\) thì \({n^2} < {(n + 1)^2} \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^2}\) không là dãy số giảm.
+ Với \({u_n} = 2n\) thì \(2n < 2\left( {n + 1} \right) \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = 2n\) không là dãy số giảm.
+ Với \({u_n} = {n^3} - 1\) thì \({n^3} - 1 < {(n + 1)^3} - 1 \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^3} - 1\) không là dãy số giảm.
+ Với \({u_n} = \frac{{2n + 1}}{{n - 1}}\) thì \({u_{n + 1}} - {u_n} = \frac{{ - 3}}{{\left( {n - 1} \right).n}} < 0\) nên dãy \({u_n} = \frac{{2n + 1}}{{n - 1}}\) là dãy số giảm.
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.