Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {2; - 1;3} \right)\). Từ điểm \(M\left( {4;1;1} \right)\) nằm ngoài mặt cầu \(\left( S \right)\), kẻ ba tiếp tuyến \(MA,MB,MC\) với mặt cầu \(\left( S \right)\) sao cho \(MA = MB = MC\). Biết \(\widehat {AMB} = {60^ \circ },\widehat {BMC} = {90^ \circ },\widehat {CMA} = {120^ \circ }\). Bán kính mặt cầu \(\left( S \right)\) bằng (1) _______.
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {2; - 1;3} \right)\). Từ điểm \(M\left( {4;1;1} \right)\) nằm ngoài mặt cầu \(\left( S \right)\), kẻ ba tiếp tuyến \(MA,MB,MC\) với mặt cầu \(\left( S \right)\) sao cho \(MA = MB = MC\). Biết \(\widehat {AMB} = {60^ \circ },\widehat {BMC} = {90^ \circ },\widehat {CMA} = {120^ \circ }\). Bán kính mặt cầu \(\left( S \right)\) bằng (1) _______.
Quảng cáo
Trả lời:
Đáp án: “3”
Giải thích
Đặt \(MA = MB = MC = a > 0\).
Áp dụng định lí \({\rm{cos}}\) cho tam giác \(MAB\) ta có:
\(A{B^2} = M{A^2} + M{B^2} - 2MA.MB.{\rm{cos}}\widehat {AMB} = {a^2} + {a^2} - 2a.a.{\rm{cos}}{60^ \circ } = {a^2}\). Suy ra \(AB = a\).
Tương tự, ta cũng tính được \(BC = \sqrt 2 a,CA = \sqrt 3 a\).
Xét tam giác \(ABC\) có: \(C{A^2} = B{C^2} + A{B^2}\) suy ra tam giác \(ABC\) vuông tại \(B\) (định lí Pythagore đảo). Do đó trung điểm \(H\) của \(AC\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Suy ra \(M,H,I\) thẳng hàng.
Xét tam giác \(MCI\) vuông tại \(C\) đường cao \(CH\):
\(IC.MC = CH.MI\) suy ra \(IC = \frac{{CH.MI}}{{MC}} = \frac{{\frac{{\sqrt 3 a}}{2}.2\sqrt 3 }}{a} = 3\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: “36/67”
Giải thích
Bước 1. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 .
Số phần tử không gian mẫu \(n\left( {\rm{\Omega }} \right) = 36\).
Để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 thì số chấm trên hai con xúc xắc là một trong các trường hợp sau \(\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)\).
Vậy xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 là \(\frac{5}{{36}}\).
Bước 2. Tính xác suất thắng của mỗi bạn.
\(A\) là biến cố bạn \({\rm{A}}\) là người chiến thắng.
\(P\left( A \right) = \left( {\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \ldots \)
\( = \frac{5}{{36}}\left[ {1 + {{\left( {\frac{{31}}{{36}}} \right)}^2} + {{\left( {\frac{{31}}{{36}}} \right)}^4} + \ldots } \right]\)
\( = \frac{5}{{36}}.\frac{1}{{1 - {{\left( {\frac{{31}}{{36}}} \right)}^2}}} = \frac{{36}}{{67}}\)
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.