Cho phương trình \({\rm{lo}}{{\rm{g}}_4}{(x + 1)^2} + 2 = {\rm{lo}}{{\rm{g}}_{\sqrt 2 }}\sqrt {4 - x} + {\rm{lo}}{{\rm{g}}_8}{(4 + x)^3}\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Số nghiệm của phương trình đã cho là _______.
Tổng của các nghiệm của phương trình đã cho là _______.
Quảng cáo
Trả lời:
Số nghiệm của phương trình đã cho là 2 .
Tổng của các nghiệm của phương trình đã cho là \(4 - 2\sqrt 6 \).
Giải thích
Điều kiện : \( - 4 < x < 4\) và \(x \ne - 1\).
Ta có \({\rm{lo}}{{\rm{g}}_4}{(x + 1)^2} + 2 = {\rm{lo}}{{\rm{g}}_{\sqrt 2 }}\sqrt {4 - x} + {\rm{lo}}{{\rm{g}}_8}{(4 + x)^3}\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_2}\left( {4\left| {x + 1} \right|} \right) = {\rm{lo}}{{\rm{g}}_2}\left[ {\left( {4 - x} \right)\left( {4 + x} \right)} \right]\)
\( \Leftrightarrow 4\left| {x + 1} \right| = 16 - {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{4\left( {x + 1} \right) = 16 - {x^2}}\\{4\left( {x + 1} \right) = {x^2} - 16}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} + 4x - 12 = 0}\\{{x^2} - 4x - 20 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = - 6}\\{x = 2 + 2\sqrt 6 }\\{x = 2 - 2\sqrt 6 }\end{array}} \right.} \right.\)
Đối chiếu điều kiện, phương trình đã cho có hai nghiệm \(x = 2\) và \(x = 2 - 2\sqrt 6 \).Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
\(\forall n \in {\mathbb{N}^{\rm{*}}}\) ta có:
+ Với \({u_n} = {n^2}\) thì \({n^2} < {(n + 1)^2} \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^2}\) không là dãy số giảm.
+ Với \({u_n} = 2n\) thì \(2n < 2\left( {n + 1} \right) \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = 2n\) không là dãy số giảm.
+ Với \({u_n} = {n^3} - 1\) thì \({n^3} - 1 < {(n + 1)^3} - 1 \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^3} - 1\) không là dãy số giảm.
+ Với \({u_n} = \frac{{2n + 1}}{{n - 1}}\) thì \({u_{n + 1}} - {u_n} = \frac{{ - 3}}{{\left( {n - 1} \right).n}} < 0\) nên dãy \({u_n} = \frac{{2n + 1}}{{n - 1}}\) là dãy số giảm.
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.