Câu hỏi:

19/08/2025 316 Lưu

Gọi S là tập hợp các số tự nhiên có năm chữ số chia hết cho 5. Chọn ngẫu nhiên một số từ tập S.

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Số phần tử của tập hợp \(S\) là 6043 .

¡

¡

Xác suất để số được chọn chia hết cho 3 là \(\frac{1}{3}\).

¡

¡

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phát biểu

ĐÚNG

SAI

Số phần tử của tập hợp \(S\) là 6043 .

¡

¤

Xác suất để số được chọn chia hết cho 3 là \(\frac{1}{3}\).

¤

¡

Giải thích

Giả sử số có năm chữ số có dạng \(\overline {abcde} \).

Vì số cần tìm chia hết cho 5 nên \(e\) có hai cách chọn là chữ số 0 và 5 .

Khi đó, \(a\) có chín cách chọn vì \(a \ne 0\); các vị trí \(b,c,d\) mỗi vị trí có mười cách chọn.

Suy số phần tử tập \(S\) là \({2.9.10^3} = 18000\) phần tử \( \Rightarrow n\left( {\rm{\Omega }} \right) = 18000\).

Số có năm chữ số bé nhất chia hết cho 5 là 10000 và lớn nhất là 99995 .

Gọi \(B\) là biến cố: "một số lấy từ tập \(S\) và chia hết cho 3 ", khi đó số được lấy này phải chia hết cho 15.

Số có năm chữ số bé nhất chia hết cho 15 là 10005 và lớn nhất là 99990 .

Vì chia hết cho 15 nên các số trong tập \(B\) này có thể xem như một cấp số cộng với

\({u_1} = 10005,{u_n} = 99990,d = 15 \Rightarrow n = \frac{{99990 - 10005}}{{15}} + 1 = 6000\)

Hay \(n\left( B \right) = 6000\). Vậy \({P_B} = \frac{{n\left( B \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{6000}}{{18000}} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({u_n} = {n^2}\).          
B. \({u_n} = 2n\).             
C. \({u_n} = {n^3} - 1\).                           
D. \({u_n} = \frac{{2n + 1}}{{n - 1}}\).

Lời giải

\(\forall n \in {\mathbb{N}^{\rm{*}}}\) ta có:

+ Với \({u_n} = {n^2}\) thì \({n^2} < {(n + 1)^2} \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^2}\) không là dãy số giảm.

+ Với \({u_n} = 2n\) thì \(2n < 2\left( {n + 1} \right) \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = 2n\) không là dãy số giảm.

+ Với \({u_n} = {n^3} - 1\) thì \({n^3} - 1 < {(n + 1)^3} - 1 \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^3} - 1\) không là dãy số giảm.

+ Với \({u_n} = \frac{{2n + 1}}{{n - 1}}\) thì \({u_{n + 1}} - {u_n} = \frac{{ - 3}}{{\left( {n - 1} \right).n}} < 0\) nên dãy \({u_n} = \frac{{2n + 1}}{{n - 1}}\) là dãy số giảm.

Lời giải

Đáp án: “595”

Giải thích

Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).

Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).

Câu 3

A. sự rơi rụng từng đoạn NST, làm giảm số lượng gen trên NST. 
B. sự trao đổi những đoạn NST không tương đồng làm thay đổi nhóm gen liên kết. 
C. một đoạn NST đứt ra rồi đảo ngược 180o và nối lại làm thay đổi trình tự phân bố gen. 
D. một đoạn của NST có thể lặp lại một hay nhiều lần, làm tăng số lượng gen trên đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Ảnh hưởng nghiêm trọng tới sức khỏe con người. 
B. Mất đi cơ hội phát triển của cá nhân và đất nước. 
C. Các dư chấn tâm lý do chịu căng thẳng kéo dài. 
D. Tiêu tốn tài nguyên thiên nhiên, đặc biệt là chất đốt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP