Quảng cáo
Trả lời:
Phương pháp giải
Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn
Lời giải
+) Tập xác định của hàm số: \(D = \mathbb{R}\).
\(\begin{array}{l} + )\,\,\forall x \in D \Rightarrow - x \in D\\ + )\,\,f( - x) = | - x|\sin ( - x) = - |x|\sin x = - f(x)\end{array}\)
Vậy hàm số lẻ.
+) Tập xác định của hàm số:\(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}.\)
\(\begin{array}{l} + )\,\,\forall x \in D \Rightarrow - x \in D.\\ + )\,\,f( - x) = \tan | - x| = \tan |x| = f(x)\end{array}\)
Vậy hàm số chẵn.
+) Tập xác định của hàm số: \(D = \mathbb{R}\).
Với mọi \(x \in D\) thì \( - x \in D\) nên \(D\) là tập đối xứng.
Ta có \(f( - x) = {\sin ^2}( - 2x) + \cos ( - 3x) = {\sin ^2}2x + \cos 3x = f(x),\forall x \in D\).
Do đó hàm số \(f(x)\) đã cho là hàm số chẵn.
+) Tập xác định \(D = \mathbb{R}\).
Với mọi \(x \in D \Rightarrow - x \in D\).
\(f( - x) = \sqrt {2 + \sin ( - x)} + \sqrt {2 - \sin ( - x)} = \sqrt {2 - \sin x} + \sqrt {2 + \sin x} = f(x).\)
Do đó hàm số đã cho chẵn trên \(D\).
Vậy đáp án đúng là A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao 5,84 km. (Làm tròn đến chữ số thập phân thứ hai)
b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi cao hơn là A, ngọn núi thấp hơn là B. Độ cao chênh lệch giữa hai ngọn núi là 1,88km. (Làm tròn đến chữ số thập phân thứ hai)
Phương pháp giải
Lời giải
a) Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) là:
\(h = - 19,4.\log \frac{{\frac{1}{2}{P_0}}}{{{P_0}}} = - 19,4.\log \frac{1}{2} \approx 5,84\,\,({\rm{km}}).\)
b) Độ cao của ngọn núi A là: \({h_A} = - 19,4.\log \frac{{{P_A}}}{{{P_0}}}\).
Độ cao của ngọn núi B là: \({h_B} = - 19,4.\log \frac{{{P_B}}}{{{P_0}}}\).
Áp suất không khí tại đỉnh của ngọn núi \(A\) bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi \(B\) nên ta có:\({P_A} = \frac{4}{5}{P_B} \Leftrightarrow \frac{{{P_A}}}{{{P_B}}} = \frac{4}{5}{\rm{. }}\)
Ta có:
\(\begin{array}{l}{h_A} - {h_B} = \left( { - 19,4.\log \frac{{{P_A}}}{{{P_0}}}} \right) - \left( { - 19,4.\log \frac{{{P_B}}}{{{P_0}}}} \right) = - 19,4.\log \frac{{{P_A}}}{{{P_0}}} + 19,4.\log \frac{{{P_B}}}{{{P_0}}}\\ = - 19,4\log \left( {\frac{{{P_A}}}{{{P_0}}}:\frac{{{P_B}}}{{{P_0}}}} \right) = - 19,4\log \frac{{{P_A}}}{{{P_B}}} = - 19,4\log \frac{4}{5} \approx 1,88\,\,({\rm{km}}).\end{array}\)
Vậy ngọn núi \(A\) cao hơn ngọn núi \(B\) là \(1,88\;{\rm{km}}\).
Lời giải
Phương pháp giải
- Gọi h là chiều cao của hình trụ, biểu diễn h theo R.
- Biểu diễn diện tích toàn phần theo R.
- Sử dụng BĐT Cauchy để tìm giá trị min.
Diện tích hình trụ, thể tích khối trụ
Lời giải
Ta có 1000 lít = 1 m3.
Gọi h là chiều cao của hình trụ ta có \(K = \pi {R^2}h = 1 \Rightarrow h = \frac{1}{{\pi {R^2}}}\).
Diện tích toàn phần là: \({S_{tp}} = 2\pi {R^2} + 2\pi Rh = 2\pi {R^2} + 2\pi R\frac{1}{{\pi {R^2}}} = 2\pi {R^2} + \frac{2}{R}\)
\( = 2\left( {\pi {R^2} + \frac{1}{{2R}} + \frac{1}{{2R}}} \right) \ge 2.3\sqrt[3]{{\pi {R^2}.\frac{1}{{2R}}.\frac{1}{{2R}}}} = 6\sqrt[3]{{\frac{\pi }{4}}}\)
Dấu "=" xảy ra khi và chỉ khi \(\pi {R^2} = \frac{1}{{2R}} \Leftrightarrow R = \sqrt[3]{{\frac{1}{{2\pi }}}}\)
Chọn C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 29)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 8)