Câu hỏi:

24/10/2024 878

Gieo 3 con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên mặt của 3 con xúc xắc là một số chia hết cho 3?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải

- Tìm số phần tử của không gian mẫu nΩ

- Xác định biến cố, số kết quả có thể có của biến số và tính xác suất

Lời giải

Gieo 3 con xúc xắc cân đối, đồng chất ⇒ nΩ = 63 = 216

A:“Tổng số chấm xuất hiện trên mặt của 3 xúc xắc là một số chia hết cho 3”

Gọi số chấm xuất hiện trên mặt của 3 xúc xắc lần lượt là a, b, c

Ta có: a, b, c ∈ {1,2,3,4,5,6}

⇒ a + b + c ≤ 6.3 = 18

Chia tập hợp {1,2,3,4,5,6} thành 3 loại

Loại 1- Chia hết cho 3: {3;6}

Loại 2- Chia 3 dư 1: {1;4}

Loại 3- Chia 3 dư 2: {2;5}

Do (a + b + c) chia hết cho 3 

⇒Trường hợp 1- cả a, b và c cùng thuộc 1 trong 3 loại  trên: 3.(2.2.2) = 24

Trường hợp 2- a, b, c mỗi số thuộc một loại: 3!.2.2.2 = 48

⇒ nA = 24 + 48 = 72

\[ \Rightarrow {P_A} = \frac{{{n_A}}}{{{n_\Omega }}} = \frac{{72}}{{216}} = \frac{1}{3}\]. 

Chọn A

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao 5,84 km. (Làm tròn đến chữ số thập phân thứ hai)

b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi cao hơn là A, ngọn núi thấp hơn là B. Độ cao chênh lệch giữa hai ngọn núi là 1,88km. (Làm tròn đến chữ số thập phân thứ hai)

Phương pháp giải

Lời giải

a) Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) là:

\(h =  - 19,4.\log \frac{{\frac{1}{2}{P_0}}}{{{P_0}}} =  - 19,4.\log \frac{1}{2} \approx 5,84\,\,({\rm{km}}).\)

b) Độ cao của ngọn núi A là: \({h_A} =  - 19,4.\log \frac{{{P_A}}}{{{P_0}}}\).

Độ cao của ngọn núi B là: \({h_B} =  - 19,4.\log \frac{{{P_B}}}{{{P_0}}}\).

Áp suất không khí tại đỉnh của ngọn núi \(A\) bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi \(B\) nên ta có:\({P_A} = \frac{4}{5}{P_B} \Leftrightarrow \frac{{{P_A}}}{{{P_B}}} = \frac{4}{5}{\rm{. }}\)

Ta có:

\(\begin{array}{l}{h_A} - {h_B} = \left( { - 19,4.\log \frac{{{P_A}}}{{{P_0}}}} \right) - \left( { - 19,4.\log \frac{{{P_B}}}{{{P_0}}}} \right) =  - 19,4.\log \frac{{{P_A}}}{{{P_0}}} + 19,4.\log \frac{{{P_B}}}{{{P_0}}}\\ =  - 19,4\log \left( {\frac{{{P_A}}}{{{P_0}}}:\frac{{{P_B}}}{{{P_0}}}} \right) =  - 19,4\log \frac{{{P_A}}}{{{P_B}}} =  - 19,4\log \frac{4}{5} \approx 1,88\,\,({\rm{km}}).\end{array}\)

Vậy ngọn núi \(A\) cao hơn ngọn núi \(B\) là \(1,88\;{\rm{km}}\).

 

Lời giải

Phương pháp giải

- Gọi h là chiều cao của hình trụ, biểu diễn h theo R.

- Biểu diễn diện tích toàn phần theo R.

- Sử dụng BĐT Cauchy để tìm giá trị min.

Diện tích hình trụ, thể tích khối trụ

Lời giải

Ta có 1000 lít  = 1 m3.

Gọi h là chiều cao của hình trụ ta có \(K = \pi {R^2}h = 1 \Rightarrow h = \frac{1}{{\pi {R^2}}}\).

Diện tích toàn phần là: \({S_{tp}} = 2\pi {R^2} + 2\pi Rh = 2\pi {R^2} + 2\pi R\frac{1}{{\pi {R^2}}} = 2\pi {R^2} + \frac{2}{R}\)

\( = 2\left( {\pi {R^2} + \frac{1}{{2R}} + \frac{1}{{2R}}} \right) \ge 2.3\sqrt[3]{{\pi {R^2}.\frac{1}{{2R}}.\frac{1}{{2R}}}} = 6\sqrt[3]{{\frac{\pi }{4}}}\)

Dấu "=" xảy ra khi và chỉ khi \(\pi {R^2} = \frac{1}{{2R}} \Leftrightarrow R = \sqrt[3]{{\frac{1}{{2\pi }}}}\)

 Chọn C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP