Câu hỏi:

24/10/2024 109

Trong không gian \(Oxyz\), cho điểm \(I\left( {1;2; - 2} \right)\) và mặt phẳng \(\left( P \right):2x + 2y + z + 5 = 0\). Mặt cầu \(\left( S \right)\) có tâm \(I\) cắt mặt phẳng \(\left( P \right)\) theo một đường tròn có chu vi bằng \(8\pi \).

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Bán kính mặt cầu \(\left( S \right)\) bằng 3 .

¡

¡

Mặt cầu \(\left( S \right)\) tiếp xúc với mặt phẳng có phương trình \(2x + 2y + z + 11 = 0\).

¡

¡

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phát biểu

ĐÚNG

SAI

Bán kính mặt cầu \(\left( S \right)\) bằng 3 .

¡

¤

Mặt cầu \(\left( S \right)\) tiếp xúc với mặt phẳng có phương trình \(2x + 2y + z + 11 = 0\).

¤

¡

Giải thích

Gọi \(H\) là hình chiếu của \(I\) trên mặt phẳng \(\left( P \right)\).

Ta có \(IH = d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.1 + 2.2 + 1.\left( { - 2} \right) + 5} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = 3\).

Gọi \(r\) là bán kính đường tròn và \(R\) là bán kính mặt cầu.

Ta có chu vi đường tròn là \(2\pi r = 8\pi  \Rightarrow r = 4\).

Bán kính mặt cầu là \(R = \sqrt {I{H^2} + {r^2}}  = \sqrt {{3^2} + {4^2}}  = 5\).

Gọi \(\left( \alpha  \right):2x + 2y + z + 11 = 0\).

Ta có \(d\left( {I,\left( \alpha  \right)} \right) = \frac{{\left| {2.1 + 2.2 + 1.\left( { - 2} \right) + 11} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = 5 = R\).

\( \Rightarrow \left( S \right)\) tiếp xúc với \(\left( \alpha  \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

¤

¡

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

¡

¤

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

¡

¤

Giải thích

Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)

a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) =  - 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a =  - 1\) hàm số liên tục phải tại \(x = 1\).

c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).

Câu 2

Lời giải

Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.

 Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP