Câu hỏi:
24/10/2024 239
Kéo số ở các ô vuông thả vào vị trí thích hợp:
Cho hàm số \(y = \frac{{{\rm{sin}}x}}{{1 + {\rm{cos}}x}} + \frac{1}{{1 - {\rm{cos}}x}} + {\rm{cot}}x\left( C \right)\). Số giao điểm của đồ thị hàm số \(\left( C \right)\) với đường thẳng \(y = 2\) trên đọan \(\left[ { - \pi ;\pi } \right]\) là _______, trong đó điểm có hoành độ \(\frac{{\pi a}}{b}\) với \(a = \)_______,\(b = \) _______\((a,b \in \mathbb{Z};b > 0;\left( {a;b} \right) = 1)\)nằm gần trục tung nhất.

Cho hàm số \(y = \frac{{{\rm{sin}}x}}{{1 + {\rm{cos}}x}} + \frac{1}{{1 - {\rm{cos}}x}} + {\rm{cot}}x\left( C \right)\). Số giao điểm của đồ thị hàm số \(\left( C \right)\) với đường thẳng \(y = 2\) trên đọan \(\left[ { - \pi ;\pi } \right]\) là _______, trong đó điểm có hoành độ \(\frac{{\pi a}}{b}\) với \(a = \)_______,\(b = \) _______\((a,b \in \mathbb{Z};b > 0;\left( {a;b} \right) = 1)\)nằm gần trục tung nhất.
Quảng cáo
Trả lời:
Cho hàm số \(y = \frac{{{\rm{sin}}x}}{{1 + {\rm{cos}}x}} + \frac{1}{{1 - {\rm{cos}}x}} + {\rm{cot}}x\left( C \right)\). Số giao điểm của đồ thị hàm số \(\left( C \right)\) với đường thẳng \(y = 2\) trên đọan \(\left[ { - \pi ;\pi } \right]\) là 3 , trong đó điểm có hoành độ \(\frac{{\pi a}}{b}\) với \(a = \)-1 ,\(b = \) 4 \((a,b \in \mathbb{Z};b > 0;\left( {a;b} \right) = 1)\)nằm gần trục tung nhất.
Giải thích
Điều kiện xác định của hàm số \(\left( C \right):\left( {\begin{array}{*{20}{c}}{{\rm{cos}}x \ne \pm 1}\\{{\rm{sin}}x \ne 0}\end{array}} \right) \Leftrightarrow x \ne k\pi \left( {k, \in ,\mathbb{Z}} \right)\).
Xét phương trình hoành độ giao điểm:
\(\frac{{{\rm{sin}}x}}{{1 + {\rm{cos}}x}} + \frac{1}{{1 - {\rm{cos}}x}} + {\rm{cot}}x = 2\,\,\left( * \right)\)
\( \Leftrightarrow \frac{{{\rm{sin}}x\left( {1 - {\rm{cos}}x} \right) + 1 + {\rm{cos}}x}}{{{\rm{si}}{{\rm{n}}^2}x}} + \frac{{{\rm{cos}}x}}{{{\rm{sin}}x}} = 2\)
\( \Rightarrow {\rm{sin}}x - {\rm{sin}}x{\rm{cos}}x + 1 + {\rm{cos}}x + {\rm{sin}}x{\rm{cos}}x = 2{\rm{si}}{{\rm{n}}^2}x\)
\( \Leftrightarrow {\rm{sin}}x + {\rm{cos}}x + 1 - 2{\rm{si}}{{\rm{n}}^2}x = 0\)
\( \Leftrightarrow {\rm{sin}}x + {\rm{cos}}x + {\rm{cos}}2x = 0\)
\( \Leftrightarrow \left( {{\rm{sin}}x + {\rm{cos}}x} \right)\left( {1 + {\rm{cos}}x - {\rm{sin}}x} \right) = 0\)
\( \Leftrightarrow \left( {\begin{array}{*{20}{c}}{\sin x + \cos x = 0}\\{1 + \cos x - \sin x = 0}\end{array}} \right) \Leftrightarrow \left( {\begin{array}{*{20}{c}}{\tan x = - 1}\\{\sin \left( {x, - ,\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}}\end{array}} \right) \Leftrightarrow \left( {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k\pi (t,m)}\\{x = \frac{\pi }{2} + k2\pi (t,m)}\\{x = \pi + k2\pi (L)}\end{array}} \right)(k, \in ,\mathbb{Z})\)
Xét \( - \pi \le - \frac{\pi }{4} + k\pi \le \pi \Leftrightarrow - \frac{3}{4} \le k \le \frac{5}{4} \Leftrightarrow k \in \left\{ {0;1} \right\}\).
Xét \( - \pi \le \frac{\pi }{2} + k2\pi \le \pi \Leftrightarrow - \frac{3}{4} \le k \le \frac{1}{4} \Leftrightarrow k = 0\).
Vậy có 3 nghiệm của (*) trên \(\left[ { - \pi ;\pi } \right]\) hay số giao điểm của đồ thị hàm số \(\left( C \right)\) với đường thẳng \(y = 2\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) là 3 , trong đó điểm có hoành độ \(\frac{{ - \pi }}{4}\) nằm gần trục tung nhất \( \Rightarrow a = - 1;{\rm{\;}}b = 4\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Với \(a = 1\) hàm số liên tục trái tại \(x = 1\). |
¤ |
¡ |
Với \(a = 1\) hàm số liên tục phải tại \(x = 1\). |
¡ |
¤ |
Với \(a = \pm 1\) hàm số liên tục tại \(x = 1\). |
¡ |
¤ |
Giải thích
Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)
a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).
b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = - 1\) hàm số liên tục phải tại \(x = 1\).
c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).
Lời giải
Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.