Câu hỏi:

24/10/2024 359

Cho \(x,y\) là các số thực dương thỏa mãn \({\rm{lo}}{{\rm{g}}_{2023}}\left( {17x} \right) + {\rm{lo}}{{\rm{g}}_{2023}}\left( {119y} \right) - 1 \ge {\rm{lo}}{{\rm{g}}_{2023}}\left( {{x^2} + y + 1} \right)\). Giá trị nhỏ nhất của biểu thức \(x + y\) bằng (1) ________.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: “7”

Giải thích

Ta có:

\({\rm{lo}}{{\rm{g}}_{2023}}\left( {17x} \right) + {\rm{lo}}{{\rm{g}}_{2023}}\left( {119y} \right) - 1 \ge {\rm{lo}}{{\rm{g}}_{2023}}\left( {{x^2} + y + 1} \right)\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_{2023}}\left( {17x} \right) + {\rm{lo}}{{\rm{g}}_{2023}}\left( {119y} \right) + {\rm{lo}}{{\rm{g}}_{2023}}\frac{1}{{2023}} \ge {\rm{lo}}{{\rm{g}}_{2023}}\left( {{x^2} + y + 1} \right)\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_{2023}}\left( {17x.119y.\frac{1}{{2023}}} \right) \ge {\rm{lo}}{{\rm{g}}_{2023}}\left( {{x^2} + y + 1} \right)\)

\( \Leftrightarrow xy \ge {x^2} + y + 1\)

\( \Leftrightarrow y\left( {x - 1} \right) \ge {x^2} + 1\)

\( \Leftrightarrow y \ge \frac{{{x^2} + 1}}{{x - 1}}\) (vì \(y > 0,y\left( {x - 1} \right) \ge {x^2} + 1 > 0\) nên \(x - 1 > 0\))

\( \Rightarrow x + y \ge x + \frac{{{x^2} + 1}}{{x - 1}}\forall x > 1;y > 0\).

Khi đó bài toán đã cho trở thành: Tìm giá trị nhỏ nhất của \(x + \frac{{{x^2} + 1}}{{x - 1}}\) với \(x > 1\).

Ta có: \(x + \frac{{{x^2} + 1}}{{x - 1}} = \frac{{{x^2} - x + {x^2} + 1}}{{x - 1}} = \frac{{2{x^2} - x + 1}}{{x - 1}} = f\left( x \right)\).

\( \Rightarrow f'\left( x \right) = \frac{{2{x^2} - 4x}}{{{{(x - 1)}^2}}};f'\left( x \right) = 0 \Leftrightarrow x = 2\) (vì \(x > 1\)).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \frac{{2{x^2} - x + 1}}{{x - 1}} =  + \infty ,f\left( 2 \right) = \frac{{{{2.2}^2} - 2 + 1}}{{2 - 1}} = 7\),

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{2{x^2} - x + 1}}{{x - 1}} =  + \infty \).

Do đó \(\mathop {{\rm{min}}}\limits_{\left( {1; + \infty } \right)} f\left( x \right) = f\left( 2 \right) = 7\).

Vậy giá trị nhỏ nhất của \(x + y\) là 7 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

¤

¡

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

¡

¤

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

¡

¤

Giải thích

Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)

a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) =  - 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a =  - 1\) hàm số liên tục phải tại \(x = 1\).

c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).

Câu 2

Lời giải

Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.

 Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP