Câu hỏi:

24/10/2024 312

Cho khối chóp \(S.ABC\) có đáy là tam giác đều, \(SA \bot \left( {ABC} \right),SC = a\sqrt 3 \) và \(SC\) hợp với đáy một góc \({30^ \circ }\).

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Chiều cao của khối chóp bằng \(\frac{{a\sqrt 3 }}{2}\).

¡

¡

Độ dài mỗi cạnh của tam giác \(ABC\) bằng \(\frac{a}{3}\).

¡

¡

Thể tích của khối chóp là \(\frac{{9{a^3}}}{{32}}\).

¡

¡

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phát biểu

ĐÚNG

SAI

Chiều cao của khối chóp bằng \(\frac{{a\sqrt 3 }}{2}\).

¤

¡

Độ dài mỗi cạnh của tam giác \(ABC\) bằng \(\frac{a}{3}\).

¡

¤

Thể tích của khối chóp là \(\frac{{9{a^3}}}{{32}}\).

¤

¡

Giải thích

Media VietJack

Ta có: \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AC\).

\(SC\) hợp với đáy một góc \({30^ \circ } \Rightarrow \widehat {SCA} = {30^ \circ }\).

Xét  vuông tại \(A\) có: \({\rm{sin}}{30^ \circ } = \frac{{SA}}{{SC}} \Rightarrow SA = \frac{{a\sqrt 3 }}{2},AC = \sqrt {S{C^2} - S{A^2}}  = \frac{{3a}}{2}\).

Tam giác \(ABC\) đều cạnh \(AC = \frac{{3a}}{2}\) nên \({S_{ABC}} = {\left( {\frac{{3a}}{2}} \right)^2}.\frac{{\sqrt 3 }}{4} = \frac{{9\sqrt 3 {a^2}}}{{16}}\) (đvdt).

Thể tích khối chóp \(S.ABC\) là: \({V_{S.ABC}} = \frac{1}{3}SA.{S_{ABC}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.\frac{{9\sqrt 3 {a^2}}}{{16}} = \frac{{9{a^3}}}{{32}}\) (đvtt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

¤

¡

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

¡

¤

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

¡

¤

Giải thích

Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)

a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) =  - 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a =  - 1\) hàm số liên tục phải tại \(x = 1\).

c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).

Câu 2

Lời giải

Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.

 Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP