Câu hỏi:
24/10/2024 261Cho hàm số \(y = {x^3} - \left( {m - 2} \right){x^2} + 3x - 1\left( C \right)\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:Với \(m = 2\), đồ thị \(\left( C \right)\) có _______ điểm cực trị.
Có _______ giá trị nguyên âm của tham số \(m\) để đồ thị \(\left( C \right)\) cắt trục hoành tại đúng một điểm.
Quảng cáo
Trả lời:
Với \(m = 2\), đồ thị \(\left( C \right)\) có 0 điểm cực trị.
Có 1 giá trị nguyên âm của tham số \(m\) để đồ thị \(\left( C \right)\) cắt trục hoành tại đúng một điểm.
Giải thích
Với \(m = 2\) ta có \(:y = {x^3} + 3x - 1 \Rightarrow y' = 3{x^2} + 3 > 0,\forall x \in \mathbb{R}\).
\( \Rightarrow \) Hàm số đã cho không có điểm cực trị.
Phương trình hoành độ giao điểm là : \({x^3} - \left( {m - 2} \right){x^2} + 3x - 1 = 0\,\,\left( {\rm{*}} \right)\).
Vì \(x = 0\) không là nghiệm của phương trình \(\left( {\rm{*}} \right)\) nên ta có :
\(\frac{{{x^3} + 3x - 1}}{{{x^2}}} = m - 2 \Leftrightarrow x + \frac{3}{x} - \frac{1}{{{x^2}}} = m - 2\).
Xét hàm số \(f\left( x \right) = x + \frac{3}{x} - \frac{1}{{{x^2}}} \Rightarrow f'\left( x \right) = 1 - \frac{3}{{{x^2}}} + \frac{2}{{{x^3}}} = \frac{{{x^3} - 3x + 2}}{{{x^3}}}\).
\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - 2}\end{array}} \right.\).
Bảng biến thiên :
Dựa vào bảng biến thiên, ta thấy \(f\left( x \right) = m - 2\) có nghiệm duy nhất \( \Leftrightarrow m - 2 > - \frac{{15}}{4} \Leftrightarrow m > - \frac{7}{4}\).
Vậy có duy nhất một giá trị nguyên âm của tham số \(m\) để đồ thị hàm số \(\left( C \right)\) cắt trục hoành tại đúng một điểm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Với \(a = 1\) hàm số liên tục trái tại \(x = 1\). |
¤ |
¡ |
Với \(a = 1\) hàm số liên tục phải tại \(x = 1\). |
¡ |
¤ |
Với \(a = \pm 1\) hàm số liên tục tại \(x = 1\). |
¡ |
¤ |
Giải thích
Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)
a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).
b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = - 1\) hàm số liên tục phải tại \(x = 1\).
c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).
Lời giải
Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận