Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \(AB = 2a,AD = a,SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\) sao cho \(SE = a\). Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu
ĐÚNG
SAI
Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BME} \right)\) bằng \(\frac{{a\sqrt {70} }}{7}\).
¡
¡
Cosin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng \(\frac{1}{{\sqrt {15} }}\).
¡
¡
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \(AB = 2a,AD = a,SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\) sao cho \(SE = a\). Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
ĐÚNG |
SAI |
Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BME} \right)\) bằng \(\frac{{a\sqrt {70} }}{7}\). |
¡ |
¡ |
Cosin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng \(\frac{1}{{\sqrt {15} }}\). |
¡ |
¡ |
Quảng cáo
Trả lời:
Phát biểu |
ĐÚNG |
SAI |
Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BME} \right)\) bằng \(\frac{{a\sqrt {70} }}{7}\). |
¡ |
¤ |
Cosin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng \(\frac{1}{{\sqrt {15} }}\). |
¤ |
¡ |
Giải thích
Góc giữa hai mặt phẳng (α) và (β) là góc \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\,\,\,\,\,\,\,\,\,\,\,\,}\\{\frac{1}{a} = \frac{2}{b} = \frac{3}{c}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{a + b + c = {{(1 + 2 + 3)}^2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 6}\\\begin{array}{l}b = 12\\c = 18\end{array}\end{array}} \right.\).
Khi đó \(\sin \varphi = \frac{{d(A;\alpha )}}{{d(A;\Delta )}}\).
Gọi \(O = AC \cap BD\).
Gọi điểm \(G\) là trọng tâm , kéo dài tia \(BM\) cắt \(AD\) tại \(F\).
Ta có \(\left( {SAC} \right) \cap \left( {BEF} \right) = EG\)
Khi đó góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) là góc \(\varphi \) có \({\rm{sin}}\varphi = \frac{{d\left( {A;\left( {BEF} \right)} \right)}}{{d\left( {A;EG} \right)}}\).
Trong \(\left( {SAC} \right)\), kẻ \(AK \bot EG\left( {K \in EG} \right)\).
Ta có: \(AE = SA - SE = 2a;AG = AC - GC = AC - \frac{2}{3}OC = \frac{2}{3}AC = \frac{{2a\sqrt 5 }}{3}\)
\( \Rightarrow d\left( {A,EG} \right) = AK = \frac{{AE.AG}}{{\sqrt {A{E^2} + A{G^2}} }} = \frac{{a\sqrt {70} }}{7}\)
Gọi \(h = d\left( {A;\left( {BEF} \right)} \right)\).
Ta có: \(\frac{{FD}}{{FA}} = \frac{{DM}}{{AB}} = \frac{1}{2} \Rightarrow FA = 2a\)
Vì \(AE,AB,AF\) đôi một vuông góc nên
\(\frac{1}{{{h^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{F^2}}} = \frac{1}{{{{(2a)}^2}}} + \frac{1}{{{{(2a)}^2}}} + \frac{1}{{{{(2a)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow h = \frac{{2a\sqrt 3 }}{3}\)
\( \Rightarrow {\rm{sin}}\varphi = \frac{{d\left( {A;\left( {BEF} \right)} \right)}}{{d\left( {A;EG} \right)}} = \frac{{\sqrt {14} }}{{\sqrt {15} }} \Rightarrow {\rm{cos}}\varphi = \frac{1}{{\sqrt {15} }}\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Với \(a = 1\) hàm số liên tục trái tại \(x = 1\). |
¤ |
¡ |
Với \(a = 1\) hàm số liên tục phải tại \(x = 1\). |
¡ |
¤ |
Với \(a = \pm 1\) hàm số liên tục tại \(x = 1\). |
¡ |
¤ |
Giải thích
Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)
a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).
b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = - 1\) hàm số liên tục phải tại \(x = 1\).
c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).
Lời giải
Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.