Câu hỏi:
24/10/2024 726Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu có bán kính \(r = \sqrt 3 \). Biết hình chóp cụt có độ dài cạnh đáy lớn gấp đôi độ dài cạnh đáy nhỏ. Thể tích khối chóp cụt bằng
Quảng cáo
Trả lời:
Giả sử ta có hình chóp cụt tam giác đều ABC.A′B′C′ như hình vẽ.
\( \Rightarrow \Delta ABC,\Delta A'B'C'\) đều.
Gọi \(H,H'\) lần lượt là tâm đường tròn nội tiếp các tam giác đều \(ABC,A'B'C'\).
\( \Rightarrow HH' \bot \left( {ABC} \right)\) và tâm mặt cầu nội tiếp hình chóp cụt thuộc \(HH'\).
Gọi \(I,I'\) lần lượt là trung điểm cạnh \(AB,A'B'\).
Ta có: \(\left. {\begin{array}{*{20}{c}}{AB \bot CI}\\{AB \bot HH'}\end{array}} \right\} \Rightarrow AB \bot \left( {CHH'} \right) \Rightarrow \left( {ABB'A'} \right) \bot \left( {CII'C'} \right)\)
\( \Rightarrow OK \bot \left( {CII'C'} \right)\)
\( \Rightarrow \) Hình cầu nội tiếp hình chóp cụt \(ABC.A'B'C'\) tiếp xúc với hai mặt phẳng đáy tại \(H,H'\) và tiếp xúc với mặt bên \(\left( {ABB'A'} \right)\) tại điểm \(K \in II'\).
Gọi \(O\) là trung điểm cạnh \(HH'\). Khi đó, \(O\) là tâm mặt cầu nội tiếp hình chóp cụt và \(OK \bot II'\).
\( \Rightarrow OK = r = \sqrt 3 \)
Đặt \(A'B' = x \Rightarrow AB = 2x\). Ta có: \(I'K = I'H = \frac{1}{3}I'C' = \frac{{x\sqrt 3 }}{6};IK = IH = \frac{1}{3}IC = \frac{{x\sqrt 3 }}{3}\)
Ta có: \(\widehat {KIO} = \widehat {HIO};\widehat {KI'H'} = \widehat {H'{I^ \top }O}\) (tính chất hai tiếp tuyến cắt nhau).
\( \Rightarrow \widehat {KIO} + \widehat {KI'O} = {90^ \circ } \Rightarrow \widehat {IOI'} = {90^ \circ }\)
\( \Rightarrow {\rm{\Delta }}IOI'\) vuông tại \(O \Rightarrow O{K^2} = IK.I'K\)
\( \Leftrightarrow 3 = \frac{{x\sqrt 3 }}{3}.\frac{{x\sqrt 3 }}{6} \Leftrightarrow x = 3\sqrt 2 \)
\( \Rightarrow {S_{ABC}} = \frac{{{{(2x)}^2}\sqrt 3 }}{4} = 18\sqrt 3 ;{S_{A'B'C'}} = \frac{{{x^2}\sqrt 3 }}{4} = \frac{{9\sqrt 3 }}{2}\)
Thể tích khối chóp cụt \(ABC.A'B'C'\) là:
\(V = \frac{{HH'}}{3}\left( {{S_{ABC}} + {S_{A'B'C'}} + \sqrt {{S_{ABC}}.{S_{A'B'C'}}} } \right) = 63\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Với \(a = 1\) hàm số liên tục trái tại \(x = 1\). |
¤ |
¡ |
Với \(a = 1\) hàm số liên tục phải tại \(x = 1\). |
¡ |
¤ |
Với \(a = \pm 1\) hàm số liên tục tại \(x = 1\). |
¡ |
¤ |
Giải thích
Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)
a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).
b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = - 1\) hàm số liên tục phải tại \(x = 1\).
c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).
Lời giải
Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận