Câu hỏi:

24/10/2024 105

Cho hình nón \(\left( N \right)\) có đường cao \(SO = 9\) và bán kính đáy bằng \(R\), gọi \(M\) là điểm trên đoạn \(SO\) sao cho \(OM = x(0 < x < 9)\). Mặt phẳng \(\left( P \right)\) vuông góc với trục \(SO\) tại \(M\) giao với hình nón \(\left( N \right)\) theo thiết diện là đường tròn \(\left( C \right)\). Giá trị của \(x\) bằng (1) ______ để khối nón có đỉnh là điểm \(O\) và đáy là hình tròn \(\left( C \right)\) có thể tích lớn nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: “3”

Giải thích

Gọi BC là đường kính của \((C)\) và AD là đường kính của đường tròn đáy của \((N)\) sao cho \(BC//AD\). S, A, B thẳng hàng \( \Rightarrow S,C,D\) thẳng hàng.

Media VietJack

Ta có \(r = BM\) là bán kính đường tròn \(\left( C \right)\).

Vì  nên \(\frac{{BM}}{{AO}} = \frac{{SM}}{{SO}} \Leftrightarrow r = \frac{{AO.SM}}{{SO}} \Leftrightarrow r = \frac{{R\left( {9 - x} \right)}}{9}\).

Thể tích của khối nón có đỉnh là \(O\), đáy là \(\left( C \right)\) là

\(V = \frac{1}{3}\pi {r^2}.OM = \frac{1}{3}\pi {\left[ {\frac{{R\left( {9 - x} \right)}}{9}} \right]^2}x = \frac{1}{{243}}\pi {R^2}{(9 - x)^2}x\).

Xét hàm số \(f\left( x \right) = \frac{1}{{243}}\pi {R^2}{(9 - x)^2}x,(0 < x < 9)\) ta có:

Ta có \(f'\left( x \right) = \frac{1}{{243}}\pi {R^2}\left( {9 - x} \right)\left( {9 - 3x} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow \frac{1}{{243}}\pi {R^2}\left( {9 - x} \right)\left( {9 - 3x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 9\left( L \right)}\\{x = 3\left( {tm} \right)}\end{array}} \right.\)

Lập bảng biến thiên ta có:

Media VietJack

Từ bảng biến thiên ta có thể tích khối nón có đỉnh là \(O\), đáy là \(\left( C \right)\) lớn nhất khi \(x = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

¤

¡

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

¡

¤

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

¡

¤

Giải thích

Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)

a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) =  - 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a =  - 1\) hàm số liên tục phải tại \(x = 1\).

c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).

Câu 2

Lời giải

Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.

 Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP