Câu hỏi:
24/10/2024 274
Cho \(n\) là số tự nhiên thỏa mãn: \(C_n^0 + 2C_n^1 + 4C_n^2 + \ldots + {2^n}C_n^n = 243\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Giá trị của \(n\) bằng _______.
Khi đó hệ số của số hạng chứa \(x\) của khai triển \({(3x - 1)^n}\) là _______.
Giá trị của biểu thức \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n\) bằng _______.
Cho \(n\) là số tự nhiên thỏa mãn: \(C_n^0 + 2C_n^1 + 4C_n^2 + \ldots + {2^n}C_n^n = 243\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Giá trị của \(n\) bằng _______.
Khi đó hệ số của số hạng chứa \(x\) của khai triển \({(3x - 1)^n}\) là _______.
Giá trị của biểu thức \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n\) bằng _______.
Quảng cáo
Trả lời:
Giá trị của \(n\) bằng 5.
Khi đó hệ số của số hạng chứa \(x\) của khai triển \({(3x - 1)^n}\) là 15.
Giá trị của biểu thức \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n\) bằng 32.
Giải thích
Xét khai triển: \({(1 + x)^n} = C_n^0 + xC_n^1 + {x^2}C_n^2 + \ldots + {x^n}C_n^n\).
Thay \(x = 2\) ta có: \(C_n^0 + 2C_n^1 + 4C_n^2 + \ldots + {2^n}C_n^n = {(1 + 2)^n} = {3^n}\).
Theo đề bài: \({3^n} = 243 \Leftrightarrow n = 5\).
Với \(n = 5\) thì:
+) \({(3x - 1)^n} = {(3x - 1)^5} = \sum\limits_{k = 0}^5 {C_5^k{{(3x)}^{5 - k}}.{{( - 1)}^k}} = \sum\limits_{k = 0}^5 {C_5^k{3^{5 - k}}.{{( - 1)}^k}.{x^{5 - k}}} \)
Ta có: \(5 - k = 1 \Leftrightarrow k = 4\).
Hệ số của số hạng chứa \(x\) của khai triển là \(C_5^4{.3^{5 - 4}}.{( - 1)^4} = 15\).
+) \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = {(1 + 1)^n} = {2^n} = {2^5} = 32\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Với \(a = 1\) hàm số liên tục trái tại \(x = 1\). |
¤ |
¡ |
Với \(a = 1\) hàm số liên tục phải tại \(x = 1\). |
¡ |
¤ |
Với \(a = \pm 1\) hàm số liên tục tại \(x = 1\). |
¡ |
¤ |
Giải thích
Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)
a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).
b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = - 1\) hàm số liên tục phải tại \(x = 1\).
c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).
Lời giải
Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.