Một hộp đựng 8 quả cầu giống nhau được đánh số từ 1 đến 8.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

a) Lấy ngẫu nhiên 2 quả cầu từ hộp thì xác suất để lấy được 2 quả cầu ghi số có tổng bằng 5 là _______.
b) Lấy ngẫu nhiên từ hộp một số quả cầu. Cần phải lấy ít nhất _______ quả cầu để xác suất lấy được ít nhất 1 quả ghi số chia hết cho 3 lớn hơn \(\frac{3}{4}\).
Một hộp đựng 8 quả cầu giống nhau được đánh số từ 1 đến 8.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:a) Lấy ngẫu nhiên 2 quả cầu từ hộp thì xác suất để lấy được 2 quả cầu ghi số có tổng bằng 5 là _______.
b) Lấy ngẫu nhiên từ hộp một số quả cầu. Cần phải lấy ít nhất _______ quả cầu để xác suất lấy được ít nhất 1 quả ghi số chia hết cho 3 lớn hơn \(\frac{3}{4}\).
Quảng cáo
Trả lời:

a) Lấy ngẫu nhiên 2 quả cầu từ hộp thì xác suất để lấy được 2 quả cầu ghi số có tổng bằng 5 là \(\frac{1}{7}\).
b) Lấy ngẫu nhiên từ hộp một số quả cầu. Cần phải lấy ít nhất 4 quả cầu để xác suất lấy được ít nhất 1 quả ghi số chia hết cho 3 lớn hơn \(\frac{3}{4}\).
Giải thích
a) Lấy ngẫu nhiên 2 quả cầu từ hộp thì số phần tử của không gian mẫu là \(n\left( {\rm{\Omega }} \right) = C_8^2\).
Gọi biến cố \(A\): "Lấy được 2 quả cầu ghi số có tổng bằng 5".
Hai quả cầu ghi số có tổng bằng 5 thì số trên 2 quả là 1 và 4 hoặc 2 và \(3 \Rightarrow n\left( A \right) = 2 + 2 = 4\).
Vậy xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{4}{{C_8^2}} = \frac{1}{7}\).
b) Nhận thấy trong 8 quả cầu đã cho, có 2 quả ghi số chia hết cho 3 là 3 và \(6;6\) quả còn lại ghi số không chia hết cho 3.
Giả sử rút ra \(x\) quả \((1 \le x \le 8,x \in \mathbb{N}\) ). Lấy ngẫu nhiên \(x\) quả từ 8 quả trong hộp thì số phần tử của không gian mẫu là \(n\left( {\rm{\Omega }} \right) = C_8^x\).
Gọi biến cố \(A\) : "Trong \(x\) quả lấy ra có ít nhất 1 quả ghi số chia hết cho 3 ".
Biến cố đối của \(A\) là \(\overline A \) : "Trong \(x\) quả lấy ra không có quả nào ghi số chia hết cho 3" \( \Rightarrow n\left( {\overline A } \right) = C_6^x\).
\( \Rightarrow P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{C_6^x}}{{C_8^x}} = \frac{{6!}}{{x!\left( {6 - x} \right)!}}:\frac{{8!}}{{x!\left( {8 - x} \right)!}} = \frac{{\left( {8 - x} \right)\left( {7 - x} \right)}}{{56}}\).
Theo đề bài
\(P\left( A \right) > \frac{3}{4} \Rightarrow 1 - P\left( {\overline A } \right) > \frac{3}{4} \Leftrightarrow 1 - \frac{{\left( {8 - x} \right)\left( {7 - x} \right)}}{{56}} > \frac{3}{4} \Leftrightarrow \frac{{\left( {8 - x} \right)\left( {7 - x} \right)}}{{56}} < \frac{1}{4} \Leftrightarrow {x^2} - 15x + 42 < 0\)
\( \Leftrightarrow 3,7 \approx \frac{{15 - \sqrt {57} }}{2} < x < \frac{{15 + \sqrt {57} }}{2} \approx 11,3\) mà \(1 \le x \le 8,x \in \mathbb{N}\)
\( \Rightarrow \) Giá trị nhỏ nhất của \(x\) là 4 .
Vậy cần phải lấy ít nhất 4 quả cầu.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Với \(a = 1\) hàm số liên tục trái tại \(x = 1\). |
¤ |
¡ |
Với \(a = 1\) hàm số liên tục phải tại \(x = 1\). |
¡ |
¤ |
Với \(a = \pm 1\) hàm số liên tục tại \(x = 1\). |
¡ |
¤ |
Giải thích
Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)
a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).
b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = - 1\) hàm số liên tục phải tại \(x = 1\).
c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).
Câu 2
A. Ánh sáng khả kiến bao gồm toàn bộ phổ bức xạ điện từ
B. Là phổ ánh sáng mà các thực vật đều có khả năng hấp thụ cho quang hợp
C. Có bước sóng nằm trong khoảng 380 đến 550 nm.
Lời giải
Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Các vấn đề về tim mạch bẩm sinh để nâng cao chất lượng sống trong xã hội hiện đại.
B. Bệnh lí về mắt xảy ra trong quá trình lão hóa hoặc các tổn thương đến từ bên ngoài.
C. Một số nhóm bệnh do virut gây ra có khả năng lây nhiễm diện rộng trong không khí.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.