Câu hỏi:

24/10/2024 742

Bạn Xuân là thành viên trong một nhóm gồm 15 người.

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

Đúng

Sai

Chọn ngẫu nhiên 3 người từ nhóm để lập một ban đại diện. Xác suất để Xuân là 1 trong 3 người được chọn là 0,2.

¡

¡

Chọn ngẫu nhiên 2 người từ nhóm để làm nhóm trưởng và nhóm phó. Xác suất để Xuân không làm nhóm trưởng cũng như nhóm phó nhỏ hơn 0,8.

¡

¡

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phát biểu

Đúng

Sai

Chọn ngẫu nhiên 3 người từ nhóm để lập một ban đại diện. Xác suất để Xuân là 1 trong 3 người được chọn là 0,2.

¤

¡

Chọn ngẫu nhiên 2 người từ nhóm để làm nhóm trưởng và nhóm phó. Xác suất để Xuân không làm nhóm trưởng cũng như nhóm phó nhỏ hơn 0,8.

¡

¤

Giải thích

+) Chọn ngẫu nhiên 3 người từ nhóm để lập một ban đại diện thì số phần tử của không gian mẫu là \(n\left( {\rm{\Omega }} \right) = C_{15}^3 = 455\).

Gọi \(A\) là biến cố: "Xuân là một trong ba người được chọn".

Có 1 cách chọn Xuân trong nhóm 15 người.

Có \(C_{14}^2\) cách chọn 2 người trong 14 người còn lại.

Suy ra \(n\left( A \right) = 1.C_{14}^2 = 91\).

Xác suất cần tìm là \(P\left( A \right) = \frac{{91}}{{455}} = 0,2\).

+) Chọn ngẫu nhiên 2 người từ nhóm để làm nhóm trưởng và nhóm phó thì số phần tử của không gian mẫu là \(n\left( {\rm{\Omega }} \right) = 15.14 = 210\).

Gọi \(A\) là biến cố: "Xuân không làm nhóm trưởng cũng như nhóm phó".

Trong 14 người còn lại, chọn nhóm trưởng có 14 cách, chọn nhóm phó có 13 cách.

Suy ra \(n\left( A \right) = 14.13 = 182\).

Xác suất cần tìm là \(P\left( A \right) = \frac{{182}}{{210}} = \frac{{13}}{{15}} \approx 0,87 > 0,8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

¤

¡

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

¡

¤

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

¡

¤

Giải thích

Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)

a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) =  - 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a =  - 1\) hàm số liên tục phải tại \(x = 1\).

c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).

Câu 2

Lời giải

Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.

 Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP