Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để bất phương trình \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - 5x + m} \right) > {\rm{lo}}{{\rm{g}}_3}\left( {x - 2} \right)\) có tập nghiệm chứa khoảng \(\left( {2; + \infty } \right)\). Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Ta có: \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - 5x + m} \right) > {\rm{lo}}{{\rm{g}}_3}\left( {x - 2} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 2 > 0}\\{{x^2} - 5x + m > x - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 2}\\{m > - {x^2} + 6x - 2}\end{array}} \right.} \right.\).
Bất phương trình \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - 5x + m} \right) > {\rm{lo}}{{\rm{g}}_3}\left( {x - 2} \right)\) có tập nghiệm chứa khoảng \(\left( {2; + \infty } \right)\) \( \Leftrightarrow m > - {x^2} + 6x - 2\) có nghiệm với mọi \(x \in \left( {2; + \infty } \right)\).
Xét hàm số \(f\left( x \right) = - {x^2} + 6x - 2\) trên \(\left( {2; + \infty } \right)\).
Ta có \(f'\left( x \right) = - 2x + 6,f'\left( x \right) = 0 \Leftrightarrow x = 3\)
Bảng biến thiên
Dựa vào bảng biến thiên ta có: \(m > - {x^2} + 6x - 2\) có nghiệm với mọi \(x \in \left( {2; + \infty } \right) \Leftrightarrow m > 7\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Với \(a = 1\) hàm số liên tục trái tại \(x = 1\). |
¤ |
¡ |
Với \(a = 1\) hàm số liên tục phải tại \(x = 1\). |
¡ |
¤ |
Với \(a = \pm 1\) hàm số liên tục tại \(x = 1\). |
¡ |
¤ |
Giải thích
Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)
a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).
b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).
Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\) và \(f\left( 1 \right) = a\).
Vậy với \(a = - 1\) hàm số liên tục phải tại \(x = 1\).
c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).
Lời giải
Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.