Câu hỏi:
25/10/2024 128Cho hàm số bộc ba \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
Đồ thị hàm số \(y = f\left( {x + a} \right)\) luôn có ______ điểm cực trị.
Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có ______ điểm cực trị.
Có ______ giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{\rm{cos}}x} \right) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\).
Quảng cáo
Trả lời:
Đáp án
Đồ thị hàm số \(y = f\left( {x + a} \right)\) luôn có 2 điểm cực trị.
Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có 3 điểm cực trị.
Có 1 giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{\rm{cos}}x} \right) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\).
Giải thích
+) Tịnh tiến đồ thị hàm số \(y = f\left( x \right)\) sang trái \(a\) đơn vị ta có đồ thị hàm số \(y = f\left( {x + a} \right)\). Vậy số điểm cực trị của đồ thị hàm số \(y = f\left( {x + a} \right)\) bằng số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Hay đồ thị hàm số \(y = f\left( {x + a} \right)\) luôn có 2 điểm cực trị.
+) Số điểm cực trị đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) bằng \(2k + 1\) với \(k\) là số điểm cực trị dương của hàm số
\(y = f\left( x \right)\). Hay đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có 3 điểm cực trị.
+) Đặt \(t = {\rm{cos}}x\) thì \(x \in \left( {0;\frac{{3\pi }}{2}} \right] \Rightarrow t \in \left[ { - 1;1} \right)\)
Với một nghiệm \(t \in \left( { - 1;0} \right]\) cho tương ứng được 2 nghiệm \(x \in \left[ {\frac{\pi }{2};\frac{{3\pi }}{2}} \right] \setminus \left\{ \pi \right\}\)
Với một nghiệm \(t \in \left( {0;1} \right) \cup \left\{ { - 1} \right\}\) cho tương ứng 1 nghiệm \(x \in \left( {0;\frac{\pi }{2}} \right) \cup \left\{ \pi \right\}\)
Do đó \(f\left( {{\rm{cos}}x} \right) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\)
\( \Leftrightarrow f\left( t \right) = m\) có 2 nghiệm \({t_1} \in \left( { - 1;0} \right]\) và \({t_2} \in \left( {0;1} \right) \cup \left\{ { - 1} \right\}\)
Dựa vào đồ thị, ycbt \( \Leftrightarrow m \in \left( {0;2} \right)\).
Vì \(m \in \mathbb{Z}\) nên \(m = 1\) hay có 1 giá trị nguyên của tham số \(m\) thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đoạn văn: “Dopamine có công thức phân tử là C8H11NO2 (3,4-dihydroxyphenethylamine)” nên dopamine còn có tên gọi là 4-(2-aminoethyl)benzene-1,2-diol và công thức cấu tạo:
Lời giải
Theo bài đọc: “Dưới tác dụng của một số enzyme, tinh bột trong nông sản sẽ bị thủy phân tạo thành đường glucose.”
Chọn C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất