Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ______0 (kết quả làm tròn đến hàng đơn vị).
Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ______0 (kết quả làm tròn đến hàng đơn vị).

Quảng cáo
Trả lời:
Đáp án
Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ___294___0 (kết quả làm tròn đến hàng đơn vị).

Giải thích

Bán kính \(R\) của hình tròn ban đầu chính là đường sinh của hình nón.
Độ dài cung lớn \(AB\) chính là chu vi của đường tròn đáy hình nón và bằng . Vậy bán kính đáy của hình nón là .
Khi đó thể tích phễu hình nón là
\(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi \frac{{{R^2}{x^2}}}{{{{360}^2}}}\sqrt {{R^2} - {{\left( {\frac{{Rx}}{{360}}} \right)}^2}} = \frac{{{R^3}{x^2}\pi }}{{{{3.360}^3}}}\sqrt {{{360}^2} - {x^2}} \).
Yêu cầu bài toán trở thành tìm giá trị lớn nhất của \(V\) với \(x \in \left( {0;360} \right)\).
Ta có \(V = \frac{{{R^3}{x^2}\pi }}{{{{3.360}^3}}}\sqrt {{{360}^2} - {x^2}} = \frac{{{R^3}\pi }}{{3\sqrt 2 {{.360}^3}}}\sqrt {{x^4}\left( {{{2.360}^2} - 2{x^2}} \right)} \).
Áp dụng bất đẳng thức Cauchy: \({x^2}{x^2}\left( {{{2.360}^2} - 2{x^2}} \right) \le {\left( {\frac{{{x^2} + {x^2} + {{2.360}^2} - 2{x^2}}}{3}} \right)^3} = \frac{{{{8.360}^6}}}{{27}}\).
Suy ra \(V \le \frac{{{R^3}\pi }}{{3\sqrt 2 {{.360}^3}}}.\frac{{2\sqrt 2 }}{{3\sqrt 3 }}{360^3} = \frac{{2\sqrt 3 {R^3}\pi }}{{27}}\).
Dấu bằng xảy ra khi \({x^2} = {2.360^2} - 2{x^2} \Leftrightarrow x = \frac{{360\sqrt 6 }}{3} \approx {294^ \circ }\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đoạn thông tin: ….Codon AUG có hai chức năng, nó vừa mã hóa cho amino acid methionine (Met), vừa là tín hiệu “bắt đầu dịch mã”.
Chọn A
Lời giải
Lượng năng lượng được sóng âm truyền qua một đơn vị diện tích đặt vuông góc với phương truyền âm trong một đơn vị thời gian gọi là (1) cường độ âm.
Câu 3
A. Vì nhu cầu nhận thức lịch sử của nhân loại đã xuất hiện từ rất sớm.
B. Vì nhu cầu nhận thức lịch sử của cộng đồng đối với bản sắc của họ.
C. Vì vấn đề dân tộc là nền tảng cho quá trình nghiên cứu lịch sử xã hội.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
