Câu hỏi:

30/10/2024 649 Lưu

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\)\(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ______0 (kết quả làm tròn đến hàng đơn vị).

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ______0 (kết quả làm tròn đến hàng đơn vị). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ___294___0 (kết quả làm tròn đến hàng đơn vị).

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ______0 (kết quả làm tròn đến hàng đơn vị). (ảnh 2)

Giải thích

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ______0 (kết quả làm tròn đến hàng đơn vị). (ảnh 3)

Bán kính \(R\) của hình tròn ban đầu chính là đường sinh của hình nón.

Độ dài cung lớn \(AB\) chính là chu vi của đường tròn đáy hình nón và bằng . Vậy bán kính đáy của hình nón là .

Khi đó thể tích phễu hình nón là

\(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi \frac{{{R^2}{x^2}}}{{{{360}^2}}}\sqrt {{R^2} - {{\left( {\frac{{Rx}}{{360}}} \right)}^2}}  = \frac{{{R^3}{x^2}\pi }}{{{{3.360}^3}}}\sqrt {{{360}^2} - {x^2}} \).

Yêu cầu bài toán trở thành tìm giá trị lớn nhất của \(V\) với \(x \in \left( {0;360} \right)\).

Ta có \(V = \frac{{{R^3}{x^2}\pi }}{{{{3.360}^3}}}\sqrt {{{360}^2} - {x^2}}  = \frac{{{R^3}\pi }}{{3\sqrt 2 {{.360}^3}}}\sqrt {{x^4}\left( {{{2.360}^2} - 2{x^2}} \right)} \).

Áp dụng bất đẳng thức Cauchy: \({x^2}{x^2}\left( {{{2.360}^2} - 2{x^2}} \right) \le {\left( {\frac{{{x^2} + {x^2} + {{2.360}^2} - 2{x^2}}}{3}} \right)^3} = \frac{{{{8.360}^6}}}{{27}}\).

Suy ra \(V \le \frac{{{R^3}\pi }}{{3\sqrt 2 {{.360}^3}}}.\frac{{2\sqrt 2 }}{{3\sqrt 3 }}{360^3} = \frac{{2\sqrt 3 {R^3}\pi }}{{27}}\).

Dấu bằng xảy ra khi \({x^2} = {2.360^2} - 2{x^2} \Leftrightarrow x = \frac{{360\sqrt 6 }}{3} \approx {294^ \circ }\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đoạn thông tin: ….Codon AUG có hai chức năng, nó vừa mã hóa cho amino acid methionine (Met), vừa là tín hiệu “bắt đầu dịch mã”.

 Chọn A

Câu 2

Lời giải

Đọc và xác định thông tin trong đoạn [1] của bài viết: “Nhu cầu nhận thức lịch sử của nhân loại đã xuất hiện từ rất sớm, ngay từ khi xã hội loài người xuất hiện dưới những hình thức sơ khai nhất. Khi đó, nhận thức lịch sử đơn giản chỉ nhằm đáp ứng nhu cầu của cộng đồng đối với việc hiểu biết và lưu truyền ký ức dân gian về cội nguồn và về bản sắc của mình, và để phân biệt với các cộng đồng láng giềng”; vậy nhu cầu lớn nhất của con người là nhận thức về cội nguồn và bản sắc của mình so với những tộc người khác.

 Chọn B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP