Câu hỏi:

30/10/2024 198 Lưu

Cho \(f\left( x \right) = \frac{3}{{\sqrt {x + 3}  - \sqrt x }} - \frac{2}{{\sqrt {x + 2}  - \sqrt x }}\) với \(x > 0\).

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

\(A = f\left( 1 \right) + f\left( 2 \right) +  \ldots  + f\left( {2024} \right) = \sqrt {2026}  - \sqrt 3 \).

   

Hàm số \(f\left( x \right)\) đạt giá trị lớn nhất bằng 1 .

   

\(B = f'\left( 1 \right) + f'\left( 2 \right) +  \ldots  + f'\left( {2024} \right) = \frac{1}{{2\sqrt {2027} }} - \frac{1}{{2\sqrt 3 }}\).

   

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án

Phát biểu

ĐÚNG

SAI

\(A = f\left( 1 \right) + f\left( 2 \right) +  \ldots  + f\left( {2024} \right) = \sqrt {2026}  - \sqrt 3 \).

  X

Hàm số \(f\left( x \right)\) đạt giá trị lớn nhất bằng 1 .

  X

\(B = f'\left( 1 \right) + f'\left( 2 \right) +  \ldots  + f'\left( {2024} \right) = \frac{1}{{2\sqrt {2027} }} - \frac{1}{{2\sqrt 3 }}\).

X  

Giải thích

Ta có: \(f\left( x \right) = \frac{3}{{\sqrt {x + 3}  - \sqrt x }} - \frac{2}{{\sqrt {x + 2}  - \sqrt x }} = \frac{{3\left( {\sqrt {x + 3}  + \sqrt x } \right)}}{{x + 3 - x}} - \frac{{2\left( {\sqrt {x + 2}  - \sqrt x } \right)}}{{x + 2 - x}}\)

\( = \left( {\sqrt {x + 3}  + \sqrt x } \right) - \left( {\sqrt {x + 2}  - \sqrt x } \right) = \sqrt {x + 3}  - \sqrt {x + 2} \)

Hay \(f\left( x \right) = \sqrt {x + 3}  - \sqrt {x + 2}  \Rightarrow f'\left( x \right) = \frac{1}{{2\sqrt {x + 3} }} - \frac{1}{{2\sqrt {x + 2} }} < 0,\forall x > 0\)

\( \Rightarrow f\left( x \right) < f\left( 0 \right),\forall x > 0 \Leftrightarrow f\left( x \right) < \sqrt 3  - \sqrt 2 ,\forall x > 0\).

Vậy hàm số \(f\left( x \right)\) không có giá trị lớn nhất trên \(\left( {0; + \infty } \right)\).

Cách 1. Ta có:

\(A = f\left( 1 \right) + f\left( 2 \right) +  \ldots  + f\left( {2024} \right)\)

    \( = \sqrt 4  - \sqrt 3  + \sqrt 5  - \sqrt 4  +  \ldots  + \sqrt {2027}  - \sqrt {2026} \)

    \( = \sqrt {2027}  - \sqrt 3 \)

\(B = f'\left( 1 \right) + f'\left( 2 \right) +  \ldots  + f'\left( {2024} \right)\)

      \( = \frac{1}{{2\sqrt 4 }} - \frac{1}{{2\sqrt 3 }} + \frac{1}{{2\sqrt 5 }} - \frac{1}{{2\sqrt 4 }} +  \ldots  + \frac{1}{{2\sqrt {2027} }} - \frac{1}{{2\sqrt {2026} }}\)

    \( = \frac{1}{{2\sqrt {2027} }} - \frac{1}{{2\sqrt 3 }}\)

Cách 2. Sử dụng Casio

\(A = \mathop \sum \limits_{x = 1}^{2024} \left( {\sqrt {x + 3}  - \sqrt {x + 2} } \right) \approx 43,29\)

    \(B = \mathop \sum \limits_{x = 1}^{2024} \left( {\frac{1}{{2\sqrt {x + 3} }} - \frac{1}{{2\sqrt {x + 2} }}} \right) \approx  - 0,277\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đoạn thông tin: ….Codon AUG có hai chức năng, nó vừa mã hóa cho amino acid methionine (Met), vừa là tín hiệu “bắt đầu dịch mã”.

 Chọn A

Câu 2

A. Vì nhu cầu nhận thức lịch sử của nhân loại đã xuất hiện từ rất sớm.

B. Vì nhu cầu nhận thức lịch sử của cộng đồng đối với bản sắc của họ.

C. Vì vấn đề dân tộc là nền tảng cho quá trình nghiên cứu lịch sử xã hội.

D. Vì vấn đề dân tộc .

Lời giải

Đọc và xác định thông tin trong đoạn [1] của bài viết: “Nhu cầu nhận thức lịch sử của nhân loại đã xuất hiện từ rất sớm, ngay từ khi xã hội loài người xuất hiện dưới những hình thức sơ khai nhất. Khi đó, nhận thức lịch sử đơn giản chỉ nhằm đáp ứng nhu cầu của cộng đồng đối với việc hiểu biết và lưu truyền ký ức dân gian về cội nguồn và về bản sắc của mình, và để phân biệt với các cộng đồng láng giềng”; vậy nhu cầu lớn nhất của con người là nhận thức về cội nguồn và bản sắc của mình so với những tộc người khác.

 Chọn B

Câu 3

A. sự thay đổi thế năng. 
B. sự thực hiện công. 
C. sự thay đổi nhiệt độ. 
D. sự truyền động năng của phần tử vật chất khi chúng va chạm vào nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP