Câu hỏi:
10/11/2024 30Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \(AB = 2a,AD = a,SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\) sao cho \(SE = a\).
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
ĐÚNG |
SAI |
Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BME} \right)\) bằng \(\frac{{a\sqrt {70} }}{7}\). |
||
Cosin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng \(\frac{1}{{\sqrt {15} }}\). |
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
ĐÚNG |
SAI |
Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BME} \right)\) bằng \(\frac{{a\sqrt {70} }}{7}\). |
X | |
Cosin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng \(\frac{1}{{\sqrt {15} }}\). |
X |
Giải thích
Góc giữa hai mặt phẳng \((\alpha )\) và \((\beta )\) là góc \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1}\\{\frac{1}{a} = \frac{2}{b} = \frac{3}{c}}\\{a + b + c = {{(1 + 2 + 3)}^2}}\end{array} \Leftrightarrow } \right.\left\{ \begin{array}{l}a = 6\\b = 12\\c = 18\end{array} \right.\) . Khi đó
\(sin\varphi = \frac{{d(A;\alpha )}}{{d(A;\Delta )}}.\)
Gọi \(O = AC \cap BD\).
Gọi điểm \(G\) là trọng tâm , kéo dài tia \(BM\) cắt \(AD\) tại \(F\).
Ta có \(\left( {SAC} \right) \cap \left( {BEF} \right) = EG\)
Khi đó góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) là góc \(\varphi \) có \({\rm{sin}}\varphi = \frac{{d\left( {A;\left( {BEF} \right)} \right)}}{{d\left( {A;EG} \right)}}\).
Trong \(\left( {SAC} \right)\), kẻ \(AK \bot EG\left( {K \in EG} \right)\).
Ta có: \(AE = SA - SE = 2a;AG = AC - GC = AC - \frac{2}{3}OC = \frac{2}{3}AC = \frac{{2a\sqrt 5 }}{3}\)
\( \Rightarrow d\left( {A,EG} \right) = AK = \frac{{AE.AG}}{{\sqrt {A{E^2} + A{G^2}} }} = \frac{{a\sqrt {70} }}{7}\)
Gọi \(h = d\left( {A;\left( {BEF} \right)} \right)\).
Ta có: \(\frac{{FD}}{{FA}} = \frac{{DM}}{{AB}} = \frac{1}{2} \Rightarrow FA = 2a\)
Vì \(AE,AB,AF\) đôi một vuông góc nên
\(\frac{1}{{{h^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{F^2}}} = \frac{1}{{{{(2a)}^2}}} + \frac{1}{{{{(2a)}^2}}} + \frac{1}{{{{(2a)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow h = \frac{{2a\sqrt 3 }}{3}\)
\( \Rightarrow {\rm{sin}}\varphi = \frac{{d\left( {A;\left( {BEF} \right)} \right)}}{{d\left( {A;EG} \right)}} = \frac{{\sqrt {14} }}{{\sqrt {15} }} \Rightarrow {\rm{cos}}\varphi = \frac{1}{{\sqrt {15} }}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Phát biểu sau đây đúng hay sai?
Phản ứng với dung dịch NaOH chứng minh nhóm chức -OH phenol có lực axit mạnh hơn nhóm chức -OH ancol.
Câu 4:
Câu 7:
Phần tư duy khoa học / giải quyết vấn đề
Phát biểu sau đây đúng hay sai?
Hai thí nghiệm trên, vi khuẩn đều được nuôi cấy trong môi trường nuôi cấy liên tục.
về câu hỏi!