Câu hỏi:
12/11/2024 100Cho tam giác đều \(ABC\) có đường tròn nội tiếp \(\left( {O;r} \right)\), cắt bỏ phần hình tròn và cho hình phẳng thu được quay quanh \(AO\).
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
|
ĐÚNG |
SAI |
Thể tích khối tròn xoay thu được là \(\pi {r^3}\). |
||
Thể tích khối tròn xoay thu được bằng thể tích khối cầu có cùng bán kính với phần bị cắt bỏ. |
Quảng cáo
Trả lời:
Đáp án
|
ĐÚNG |
SAI |
Thể tích khối tròn xoay thu được là \(\pi {r^3}\). |
X | |
Thể tích khối tròn xoay thu được bằng thể tích khối cầu có cùng bán kính với phần bị cắt bỏ. |
X |
Phương pháp giải
- Gọi \(H\) là chân đường cao \(AH\) của tam giác \(ABC\)
- Khi quay tam giác \(ABC\) quanh trục \(AO\) ta được hình nón có thể tích là: \({V_N}\), có đáy là đường tròn đường kính \(BC\)
Lời giải
Gọi \(H\) là chân đường cao \(AH\) của tam giác \(ABC\)
Vì tam giác \(ABC\) đều nên ta có: \(AH = 3OH = 3r\), \(AH = BC\frac{{\sqrt 3 }}{2} \Leftrightarrow BC = \frac{2}{{\sqrt 3 }}AH = .r2\sqrt 3 \)
Khi quay tam giác \(ABC\) quanh trục \(AO\) ta được hình nón có thể tích là: \({V_N}\), có đáy là đường tròn đường kính \(BC\) khi đó: \({S_N} = \pi H{C^2} = \pi {r^2}3\), chiều cao của hình nón là:\(AH = 3r\), khi đó thể tích hình nón là: \({V_N} = \frac{1}{3}AH.{S_N} = \frac{1}{3}3r.\pi {r^2}3 = 3\pi {r^3}\) (đvtt)
Thể tích khối cầu khi quay hình tròn \(\left( {O;r} \right)\) quanh trục \(AO\) là: \({V_C} = \frac{4}{3}\pi {r^3}\)
Vậy thể tích \(V\) của khối tròn xoay thu được khi quay tam giác \(ABC\) đã cắt bỏ phần hình tròn quanh trục \(AO\) là: \(V = {V_N} - {V_C} = 3\pi {r^3} - \frac{4}{3}\pi {r^3} = \frac{5}{3}\pi {r^3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải
Dựa vào nhiệt độ sôi của nước và etanol, chất nào bay hơi trước thì sẽ giảm nồng độ trước.
Lời giải
Khi chưng cất rượu nấu, etanol có nhiệt độ sôi thấp hơn nước sẽ bay hơi trước nên tỉ lệ etanol/nước sẽ tăng dần. Vậy nhận định trên là nhận định sai.
Chọn B
Lời giải
Phương pháp giải
Lời giải
Để \(\widehat {\vec u,\vec v)} < {90^ \circ } \Rightarrow {\rm{cos}}\widehat {\left( {\vec u,\vec v} \right)} > 0\).
\( \Rightarrow \vec u.\vec v > 0 \Leftrightarrow 3 + {\rm{lo}}{{\rm{g}}_3}5.{\rm{lo}}{{\rm{g}}_5}3 + 4{\rm{lo}}{{\rm{g}}_m}2 > 0\)
\( \Leftrightarrow 4 + 4{\rm{lo}}{{\rm{g}}_m}2 > 0 \Leftrightarrow {\rm{lo}}{{\rm{g}}_m}2 > - 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 1}\\{m < \frac{1}{2}}\end{array}} \right.\).
Kết hợp điều kiện \(m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}{m > 1}\\{0 < m < \frac{1}{2}}\end{array}} \right.\)
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận