Khóa học đang cập nhật!

Câu hỏi:

12/11/2024 1,084

Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ để biễu diễn trong lễ bế giảng. Có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải thích

+ Số cách chọn ngẫu nhiên 5 học \({\rm{sinh}}C_9^5\) cách.

+ Số cách chọn 5 học sinh chỉ có 2 lớp: \(C_7^5 + C_6^5 + C_5^5\)

Vậy số cách chọn 5 học sinh có cả 3 lớp là \(C_9^5 - \left( {C_7^5 + C_6^5 + C_5^5} \right) = 98\).

 Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) =  - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) __5__.

Giải thích

Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}1&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2}&{{\rm{\;khi\;}}2 \le x \le 6}\end{array}} \right.\).

Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + {C_1}}&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}}&{{\rm{khi\;}}2 \le x \le 6\,\,\,}\end{array}} \right.\).

Ta có \(F\left( { - 1} \right) =  - 1 \Leftrightarrow  - 1 + {C_1} =  - 1 \Leftrightarrow {C_1} = 0\).

Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\).

\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) như hình vẽ    Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) =  - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) _______. (ảnh 2)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}x&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1}&{{\rm{khi\;}}2 \le x \le 6\,\,}\end{array}} \right.\).

Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).

 

Lời giải

Đáp án

Mức cường độ âm thấp nhất mà tai người có thể nghe được là 0  B.

Khi mức cường độ âm đạt đến ngưỡng đau \(\left( {13B} \right)\) thì cường độ âm là 10 \({\rm{W}}/{{\rm{m}}^2}\).

Giải thích

Cường độ âm thấp nhất là \(I = {I_0}\). Khi đó, mức cường độ âm thấp nhất mà tai người có thể nghe được là \(L = {\rm{log}}1 = 0\left( B \right)\).

Khi \(L = 13\left( B \right)\) thì \(I = {10^L}{I_0} = {10^{13}}{.10^{ - 12}} = 10\left( {{\rm{W}}/{{\rm{m}}^2}} \right)\)

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP