Câu hỏi:

14/11/2024 558

Diện tích tam giác đều nội tiếp đường tròn \(\left( {O\,;\,\,2\,\,{\rm{cm}}} \right)\) là

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Diện tích tam giác đều nội tiếp đường tròn  ( O ; 2 c m )  là (ảnh 1)

Gọi tam giác đều \[ABC\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a\].

Khi đó \[O\] là trọng tâm tam giác \[ABC\] và cũng là tâm đường tròn ngoại tiếp tam giác \[ABC\] nên \(AO = 2\,\,{\rm{cm}}\).

Gọi \[AH\] là đường trung tuyến.

Suy ra \(2 = AO = \frac{2}{3}AH\) hay \(AH = 3\,\,{\rm{cm}}\).

Áp dụng định lý Pythagore với tam giác \[ABH\] vuông tại \[H\], ta có: \(A{H^2} = A{B^2} - B{H^2}.\)

Khi đó \[AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\].

Do đó \(3 = \frac{{a\sqrt 3 }}{2}\) hay \(a = 2\sqrt 3 \) (cm).

Diện tích tam giác \[ABC\] là: \(\frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot 2 \cdot 2\sqrt 3 = 3\sqrt 3 \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\) .

Vậy diện tích tam giác đều nội tiếp đường tròn \(\left( {O\,;\,\,2\,\,{\rm{cm}}} \right)\) là \(3\sqrt 3 \,\,{\rm{c}}{{\rm{m}}^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \[\Delta ABC\] vuông tại \[A\], có \[AB = 6{\rm{ cm}}\] và \[AC = 8{\rm{ cm}}\] ngoại tiếp đường tròn \[\left( {I;{\rm{ }}r} \right)\]. Bán kính \[r\] của đường tròn là

Xem đáp án » 14/11/2024 297

Câu 2:

III. Vận dụng

Cho \[\Delta ABC\] cân tại \[A\] nội tiếp đường tròn \[\left( O \right)\]. Gọi \[E,{\rm{ }}F\] theo thứ tự là hình chiếu của \[\left( O \right)\] lên \[AB\] và \[AC\]. Khẳng định nào sau đây là đúng?

Xem đáp án » 14/11/2024 232

Câu 3:

Tam giác \[ABC\] vuông tại \[A\] có đường cao \[AH = \frac{{12}}{5}\] cm và \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Bán kính \[R\] của đường tròn ngoại tiếp tam giác \[ABC\] là

Xem đáp án » 14/11/2024 123

Câu 4:

Cho \[\Delta ABC\] vuông tại \[A\], \(\widehat {BAC} = 90^\circ \,\,\left( {AB{\rm{ }} \le {\rm{ }}AC} \right)\). Đường tròn \[\left( I \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[BC\] tại \[D\]. Kết quả nào sau đây là đúng?

Xem đáp án » 14/11/2024 113

Câu 5:

Cho tam giác \[ABC\] vuông tại \[A\], có \[AB = 5\,\,{\rm{cm}}\]; \[AC = 12\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là

Xem đáp án » 14/11/2024 110

Câu 6:

II. Thông hiểu

Đường tròn nội tiếp hình vuông cạnh \[a\] có bán kính là

Xem đáp án » 14/11/2024 69

Bình luận


Bình luận