Câu hỏi:
14/11/2024 274Cho tam giác \[ABC\] vuông tại \[A\], có \[AB = 5\,\,{\rm{cm}}\]; \[AC = 12\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Vì tam giác \[ABC\] vuông tại \[A\] nên tâm đường tròn ngoại tiếp là trung điểm O của cạnh huyền \[BC\], bán kính \(R = \frac{{BC}}{2}\).
Theo định lý Pythagore, ta có: \(BC = \sqrt {A{C^2} + A{B^2}} = \sqrt {{5^2} + {{12}^2}} = 13\) (cm).
Vậy bán kính đường tròn ngoại tiếp tam giác \[ABC\] là \(R = \frac{{BC}}{2} = \frac{{13}}{2}\) (cm).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi tam giác đều \[ABC\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a\].
Khi đó \[O\] là trọng tâm tam giác \[ABC\] và cũng là tâm đường tròn ngoại tiếp tam giác \[ABC\] nên \(AO = 2\,\,{\rm{cm}}\).
Gọi \[AH\] là đường trung tuyến.
Suy ra \(2 = AO = \frac{2}{3}AH\) hay \(AH = 3\,\,{\rm{cm}}\).
Áp dụng định lý Pythagore với tam giác \[ABH\] vuông tại \[H\], ta có: \(A{H^2} = A{B^2} - B{H^2}.\)
Khi đó \[AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\].
Do đó \(3 = \frac{{a\sqrt 3 }}{2}\) hay \(a = 2\sqrt 3 \) (cm).
Diện tích tam giác \[ABC\] là: \(\frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot 2 \cdot 2\sqrt 3 = 3\sqrt 3 \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\) .
Vậy diện tích tam giác đều nội tiếp đường tròn \(\left( {O\,;\,\,2\,\,{\rm{cm}}} \right)\) là \(3\sqrt 3 \,\,{\rm{c}}{{\rm{m}}^2}\).
Lời giải
Đáp án đúng là: B
Đường tròn \[\left( {I;{\rm{ }}r} \right)\] tiếp xúc với các cạnh \[AB,{\rm{ }}AC,{\rm{ }}BC\] theo thứ tự \[M,{\rm{ }}N,{\rm{ }}P\].
Ta có: \({S_{AIB}} = \frac{1}{2}IM \cdot AB = \frac{1}{2} \cdot r \cdot AB & \left( 1 \right)\)
\({S_{AIC}} = \frac{1}{2}IN \cdot AC = \frac{1}{2} \cdot r \cdot AC & \left( 2 \right)\)
\({S_{BIC}} = \frac{1}{2}r.BC & & & \left( 3 \right)\)
Cộng vế theo vế ở các biểu thức \(\left( 1 \right),\,\,\left( 2 \right),\,\,\left( 3 \right)\), ta được:
\(\frac{{{S_{AIB}} + {S_{AIC}} + {S_{BIC}}}}{{{S_{ABC}}}} = \frac{1}{2}r\left( {AB + AC + BC} \right)\).
Mà \({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.6.8 = 24\) (cm2), \(BC = \sqrt {{6^2} + {8^2}} = 10\) (cm)
Nên ta có: \(24 = \frac{1}{2}r \cdot \left( {6 + 8 + 10} \right)\) hay \(\frac{1}{2}r \cdot 12 = 24\).
Do đó \(r = 2\,\,{\rm{cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận