Câu hỏi:
11/12/2024 407Cho hàm số \(y = \frac{{x - 1}}{{2x - 3}}\) \[\left( C \right)\].
a) Tiệm cận đứng của hàm số là \(x = \frac{3}{2}\).
b) Tọa độ giao điểm hai đường tiệm cận thuộc đường thẳng \(x - y - 1 = 0\)
c) Đường thẳng \(2x + y - 1 = 0\) cắt tiệm cận đứng, tiệm cận ngang của hàm số tại các điểm A và B. Diện tích của tam giác \(IAB\) bằng \(\frac{{25}}{4}\), với \(I\)là giao điểm hai đường tiệm cận.
d) Gọi \(I\) là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ \(I\) đến một tiếp tuyến bất kỳ của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng \(\frac{1}{{\sqrt 2 }}\).
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) S, d) Đ
a) Vì \(\mathop {\lim }\limits_{x \to {{\left( {\frac{3}{2}} \right)}^ + }} \frac{{x - 1}}{{2x - 3}} = + \infty \) nên tiệm cận đứng của hàm số là \(x = \frac{3}{2}\).
b) Hàm số có 1 tiệm cận đứng là \(x = \frac{3}{2}\) và 1 tiệm cận ngang là \(y = \frac{1}{2}\), nên tọa độ giao điểm hai đường tiệm cận là \(I\left( {\frac{3}{2};\frac{1}{2}} \right)\). Rõ ràng I thuộc đường thẳng \(x - y - 1 = 0\).
c) Tọa độ điểm A: \(x = \frac{3}{2} \Rightarrow y = - 2\) suy ra \(A\left( {\frac{3}{2}; - 2} \right)\).
Tọa độ điểm B: \(y = \frac{1}{2} \Rightarrow x = \frac{1}{4}\) suy ra \(B\left( {\frac{1}{4};\frac{1}{2}} \right)\).
\[\overrightarrow {IA} \left( {0; - \frac{5}{2}} \right) \Rightarrow IA = \frac{5}{2}\]; \[\overrightarrow {IB} \left( {\frac{{ - 5}}{4};0} \right) \Rightarrow IB = \frac{5}{4}\]; \[{S_{\Delta IAB}} = \frac{1}{2}IA.IB = \frac{1}{2}.\frac{5}{4}.\frac{5}{2} = \frac{{25}}{{16}}\].
d) Tọa độ giao điểm \(I\left( {\frac{3}{2};\frac{1}{2}} \right)\).
Gọi tọa độ tiếp điểm là \(\left( {{x_0};\frac{{{x_0} - 1}}{{2{x_0} - 3}}} \right)\).
Khi đó phương trình tiếp tuyến \(\Delta \) với đồ thị hàm số tại điểm \(\left( {{x_0};\frac{{{x_0} - 1}}{{2{x_0} - 3}}} \right)\) là:
\(y = - \frac{1}{{{{\left( {2{x_0} - 3} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{{x_0} - 1}}{{2{x_0} - 3}} \Leftrightarrow x + {\left( {2{x_0} - 3} \right)^2}y - 2x_0^2 + 4{x_0} - 3 = 0\).
Khi đó: \(d\left( {I,\Delta } \right) = \frac{{\left| {\frac{3}{2} + \frac{1}{2}{{\left( {2{x_0} - 3} \right)}^2} - 2x_0^2 + 4{x_0} - 3} \right|}}{{\sqrt {1 + {{\left( {2{x_0} - 3} \right)}^4}} }} = \frac{{\left| { - 2{x_0} + 3} \right|}}{{\sqrt {1 + {{\left( {2{x_0} - 3} \right)}^4}} }} \le \frac{{\left| {2{x_0} - 3} \right|}}{{\sqrt {2{{\left( {2{x_0} - 3} \right)}^2}} }} = \frac{1}{{\sqrt 2 }}\)
(Theo bất đẳng thức Cô si)
Dấu xảy ra khi và chỉ khi \({\left( {2{x_0} - 3} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}2{x_0} - 3 = 1\\2{x_0} - 3 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} = 1\end{array} \right.\).
Vậy \(\max d\left( {I,\Delta } \right) = \frac{1}{{\sqrt 2 }}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(h\left( t \right) = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\)\( \Rightarrow h'\left( t \right) = - \frac{\pi }{6}\sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\).
\(h'\left( t \right) = 0 \Leftrightarrow \sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) = 0 \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{3} = k\pi \)\( \Leftrightarrow t = - 4 + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).
Mà \(0 \le t \le 24\) nên \(0 \le - 4 + 12k \le 24 \Leftrightarrow \frac{1}{3} \le k \le \frac{7}{3}\)\( \Rightarrow k \in \left\{ {1\,;\,2} \right\}\).
Do đó \(h'\left( t \right) = 0 \Rightarrow \left[ \begin{array}{l}t = 8\\t = 20\end{array} \right.\).
\( \Rightarrow h\left( t \right)\) đồng biến trên khoảng \(\left( {8\,;\,20} \right)\) hay trong khoảng từ \(8\,{\rm{h}}\) đến \(20\,{\rm{h}}\)độ sâu của mực nước trong kênh tăng dần.
Vậy \(a = 8\,;\,b = 20\) và \(a + b = 28\).
Lời giải
Ta có:\(\overrightarrow {AC} .\overrightarrow {AD} = 0\);\[\overrightarrow {AB} .\overrightarrow {AD} = AB.AD.cos60^\circ = \frac{1}{2}\];\[\overrightarrow {AC} .\overrightarrow {AB} = \frac{1}{2}\].
\( \Rightarrow I{J^2} = {\overrightarrow {IJ} ^2}\, = \frac{1}{4}{\left( {\overrightarrow {AC} + \overrightarrow {AD} - \frac{3}{2}\overrightarrow {AB} } \right)^2} = \frac{1}{4}\left( {\frac{{17}}{4} + 2\overrightarrow {AC} .\overrightarrow {AD} - 3\overrightarrow {AC} .\overrightarrow {AB} - 3\overrightarrow {AB} .\overrightarrow {AD} } \right) = \frac{5}{{16}}\).
\( \Rightarrow IJ = \frac{{\sqrt 5 }}{4} \approx 0,56.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận