Câu hỏi:

11/12/2024 406

Cho hàm số \(y = \frac{{x - 1}}{{2x - 3}}\) \[\left( C \right)\].

a) Tiệm cận đứng của hàm số là \(x = \frac{3}{2}\).

b) Tọa độ giao điểm hai đường tiệm cận thuộc đường thẳng \(x - y - 1 = 0\)

c) Đường thẳng \(2x + y - 1 = 0\) cắt tiệm cận đứng, tiệm cận ngang của hàm số tại các điểm A và B. Diện tích của tam giác \(IAB\) bằng \(\frac{{25}}{4}\), với \(I\)là giao điểm hai đường tiệm cận.

d) Gọi \(I\) là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ \(I\) đến một tiếp tuyến bất kỳ của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng \(\frac{1}{{\sqrt 2 }}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) Đ, c) S, d) Đ

a) \(\mathop {\lim }\limits_{x \to {{\left( {\frac{3}{2}} \right)}^ + }} \frac{{x - 1}}{{2x - 3}} = + \infty \) nên tiệm cận đứng của hàm số là \(x = \frac{3}{2}\).

b) Hàm số có 1 tiệm cận đứng là \(x = \frac{3}{2}\) và 1 tiệm cận ngang là \(y = \frac{1}{2}\), nên tọa độ giao điểm hai đường tiệm cận là \(I\left( {\frac{3}{2};\frac{1}{2}} \right)\). Rõ ràng I thuộc đường thẳng \(x - y - 1 = 0\).

c) Tọa độ điểm A: \(x = \frac{3}{2} \Rightarrow y = - 2\) suy ra \(A\left( {\frac{3}{2}; - 2} \right)\).

Tọa độ điểm B: \(y = \frac{1}{2} \Rightarrow x = \frac{1}{4}\) suy ra \(B\left( {\frac{1}{4};\frac{1}{2}} \right)\).

\[\overrightarrow {IA} \left( {0; - \frac{5}{2}} \right) \Rightarrow IA = \frac{5}{2}\]; \[\overrightarrow {IB} \left( {\frac{{ - 5}}{4};0} \right) \Rightarrow IB = \frac{5}{4}\]; \[{S_{\Delta IAB}} = \frac{1}{2}IA.IB = \frac{1}{2}.\frac{5}{4}.\frac{5}{2} = \frac{{25}}{{16}}\].

d) Tọa độ giao điểm \(I\left( {\frac{3}{2};\frac{1}{2}} \right)\).

Gọi tọa độ tiếp điểm là \(\left( {{x_0};\frac{{{x_0} - 1}}{{2{x_0} - 3}}} \right)\).

Khi đó phương trình tiếp tuyến \(\Delta \) với đồ thị hàm số tại điểm \(\left( {{x_0};\frac{{{x_0} - 1}}{{2{x_0} - 3}}} \right)\) là:

\(y = - \frac{1}{{{{\left( {2{x_0} - 3} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{{x_0} - 1}}{{2{x_0} - 3}} \Leftrightarrow x + {\left( {2{x_0} - 3} \right)^2}y - 2x_0^2 + 4{x_0} - 3 = 0\).

Khi đó: \(d\left( {I,\Delta } \right) = \frac{{\left| {\frac{3}{2} + \frac{1}{2}{{\left( {2{x_0} - 3} \right)}^2} - 2x_0^2 + 4{x_0} - 3} \right|}}{{\sqrt {1 + {{\left( {2{x_0} - 3} \right)}^4}} }} = \frac{{\left| { - 2{x_0} + 3} \right|}}{{\sqrt {1 + {{\left( {2{x_0} - 3} \right)}^4}} }} \le \frac{{\left| {2{x_0} - 3} \right|}}{{\sqrt {2{{\left( {2{x_0} - 3} \right)}^2}} }} = \frac{1}{{\sqrt 2 }}\)

(Theo bất đẳng thức Cô si)

Dấu  xảy ra khi và chỉ khi \({\left( {2{x_0} - 3} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}2{x_0} - 3 = 1\\2{x_0} - 3 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} = 1\end{array} \right.\).

Vậy \(\max d\left( {I,\Delta } \right) = \frac{1}{{\sqrt 2 }}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(h\left( t \right) = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\)\( \Rightarrow h'\left( t \right) = - \frac{\pi }{6}\sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\).

\(h'\left( t \right) = 0 \Leftrightarrow \sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) = 0 \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{3} = k\pi \)\( \Leftrightarrow t = - 4 + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

\(0 \le t \le 24\) nên \(0 \le - 4 + 12k \le 24 \Leftrightarrow \frac{1}{3} \le k \le \frac{7}{3}\)\( \Rightarrow k \in \left\{ {1\,;\,2} \right\}\).

Do đó \(h'\left( t \right) = 0 \Rightarrow \left[ \begin{array}{l}t = 8\\t = 20\end{array} \right.\).

Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (ảnh 1)

\( \Rightarrow h\left( t \right)\) đồng biến trên khoảng \(\left( {8\,;\,20} \right)\) hay trong khoảng từ \(8\,{\rm{h}}\) đến \(20\,{\rm{h}}\)độ sâu của mực nước trong kênh tăng dần.

Vậy \(a = 8\,;\,b = 20\)\(a + b = 28\).

Lời giải

Cho tứ diện ABCD có \(AB = AC = AD = 1.\) và {BAC} = {BAD} (ảnh 1)

Ta có:\(\overrightarrow {AC} .\overrightarrow {AD} = 0\);\[\overrightarrow {AB} .\overrightarrow {AD} = AB.AD.cos60^\circ = \frac{1}{2}\];\[\overrightarrow {AC} .\overrightarrow {AB} = \frac{1}{2}\].

\( \Rightarrow I{J^2} = {\overrightarrow {IJ} ^2}\, = \frac{1}{4}{\left( {\overrightarrow {AC} + \overrightarrow {AD} - \frac{3}{2}\overrightarrow {AB} } \right)^2} = \frac{1}{4}\left( {\frac{{17}}{4} + 2\overrightarrow {AC} .\overrightarrow {AD} - 3\overrightarrow {AC} .\overrightarrow {AB} - 3\overrightarrow {AB} .\overrightarrow {AD} } \right) = \frac{5}{{16}}\).

\( \Rightarrow IJ = \frac{{\sqrt 5 }}{4} \approx 0,56.\)

Câu 5

Cho hình hộp ABCD.A'B'C'D'. Vectơ u=BB'+BA+BC bằng vectơ nào dưới đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay