Câu hỏi:

11/12/2024 744 Lưu

Giả sử kết quả khảo sát hai khu vực \(A\)\(B\) về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:

Tuổi kết hôn

\([19;22)\)

\([22;25)\)

\([25;28)\)

\([28;31)\)

\([31;34)\)

Số phụ nữ khu vực \(A\)

10

27

31

25

7

Số phụ nữ khu vực \(B\)

47

40

11

2

0

a) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(15\) (tuổi).

b) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(12\)(tuổi).

c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm ứng với khu vực A là: \(\frac{{61}}{3}\) (tuổi).

d) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) Đ, c) S, d) Đ

a) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(34 - 19 = 15\) (tuổi).

b) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(31 - 19 = 12\)(tuổi).

c) Cỡ mẫu \(n = 100\)

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 22 + \frac{{\frac{{100}}{4} - 10}}{{27}}(25 - 22) = \frac{{71}}{3}\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 28 + \frac{{\frac{{3.100}}{4} - (10 + 27 + 31)}}{{25}}(31 - 28) = \frac{{721}}{{25}}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{388}}{{75}}\).

d) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm B là: \({Q_1}^\prime = 19 + \frac{{\frac{{100}}{4}}}{{47}}(22 - 19) = \frac{{968}}{{47}}\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm B là: \({Q_3}^\prime = 22 + \frac{{\frac{{3.100}}{4} - 47}}{{40}}(25 - 22) = \frac{{241}}{{10}}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm B là \({\Delta _Q}^\prime = \frac{{241}}{{10}} - \frac{{968}}{{47}} = \frac{{1647}}{{470}}\).

\({\Delta _Q}^\prime < {\Delta _Q}\) nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(h\left( t \right) = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\)\( \Rightarrow h'\left( t \right) = - \frac{\pi }{6}\sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\).

\(h'\left( t \right) = 0 \Leftrightarrow \sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) = 0 \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{3} = k\pi \)\( \Leftrightarrow t = - 4 + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

\(0 \le t \le 24\) nên \(0 \le - 4 + 12k \le 24 \Leftrightarrow \frac{1}{3} \le k \le \frac{7}{3}\)\( \Rightarrow k \in \left\{ {1\,;\,2} \right\}\).

Do đó \(h'\left( t \right) = 0 \Rightarrow \left[ \begin{array}{l}t = 8\\t = 20\end{array} \right.\).

Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (ảnh 1)

\( \Rightarrow h\left( t \right)\) đồng biến trên khoảng \(\left( {8\,;\,20} \right)\) hay trong khoảng từ \(8\,{\rm{h}}\) đến \(20\,{\rm{h}}\)độ sâu của mực nước trong kênh tăng dần.

Vậy \(a = 8\,;\,b = 20\)\(a + b = 28\).

Lời giải

Gọi hai kích thước của hình chữ nhật là \(x\)\(y\), với \(2x + y = 240\) \(\left( {0 < x < 120;0 < y < 240} \right)\).

Suy ra \(y = 240 - 2x\)

Diện tích của mảnh vườn hình chữ nhật là:

\(S = xy = x\left( {240 - 2x} \right) = 240x - 2{x^2},0 < x < 120\).

\(S' = 240 - 4x\); \(S' = 0 \Leftrightarrow x = 60 \in \left( {0;120} \right)\).

Bảng biến thiên

Một ông nông dân có \(240\)m hàng rào và muốn rào lại cánh đồng hình chữ nhật tiếp giáp với một con (ảnh 1)

Từ bảng biến thiên ta thấy \(\mathop {\max }\limits_{\left( {0;120} \right)} S = 7200 \Leftrightarrow x = 60\).

Vậy ông nông dân có thể rào được cánh đồng với diện tích lớn nhất là \(7200\)2.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP