Câu hỏi:
12/12/2024 6,797
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Xác định số tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - 1}}{{{f^2}\left( x \right) - f\left( x \right)}}\).
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Xác định số tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - 1}}{{{f^2}\left( x \right) - f\left( x \right)}}\).

Quảng cáo
Trả lời:
Xét \({f^2}\left( x \right) - f\left( x \right) = 0 \Leftrightarrow f\left( x \right)\left[ {f\left( x \right) - 1} \right] = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\;\left( 1 \right)\\f\left( x \right) = 1\;\left( 2 \right)\end{array} \right.\).
Phương trình (1) có nghiệm đơn \(x = - 2\) và nghiệm kép \(x = 1\).
Phương trình (2) có 3 nghiệm a, b, c khác các nghiệm phương trình thứ nhất.
Như vậy \(y = \frac{{{x^2} - 1}}{{{f^2}\left( x \right) - f\left( x \right)}} = \frac{{{x^2} - 1}}{{k{{\left( {x - 1} \right)}^2}\left( {x + 2} \right)\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}\)
\( = \frac{{x + 1}}{{k\left( {x - 1} \right)\left( {x + 2} \right)\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}\).
Ngoài ra \(\mathop {\lim }\limits_{x \to \infty } y = \frac{{{x^2} - 1}}{{{f^2}\left( x \right) - f\left( x \right)}} = 0\) nên \(y = 0\) là tiệm cận ngang của đồ thị hàm số.
Vậy có tất cả 6 đường tiệm cận.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi O là tâm của hình vuông \(ABCD\).
Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)\( \Leftrightarrow 4\overrightarrow {SO} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} \)\( \Rightarrow \left| {4\overrightarrow {SO} } \right| = \left| {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} } \right|\).
Trọng lượng của vật nặng là \(P = mg = 3.10 = 30\)(N). Suy ra \(4\left| {\overrightarrow {SO} } \right| = P = 30 \Rightarrow SO = \frac{{15}}{2}\).
Lại có tam giác \(ASC\) vuông cân tại \(S\) nên \(SA = \frac{{SO}}{{\sin \widehat {SAC}}} = \frac{{\frac{{15}}{2}}}{{\sin 45^\circ }} = \frac{{15\sqrt 2 }}{2} = \frac{{30\sqrt 2 }}{4} \Rightarrow a = 30.\)
Lời giải
a) S, b) S, c) Đ, d) S
a) Có \(y' = 3{x^2} - 3\).
\[y' = 0 \Leftrightarrow 3{x^2} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}y\left( { - 1} \right) = 3\\y\left( 1 \right) = - 1\end{array} \right.\].
Ta có bảng biến thiên:

Từ bảng biến thiên ta có hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
b) Từ bảng biến thiên ta có trên khoảng \(\left( { - \infty ;1} \right)\) hàm số có giá trị lớn nhất là 3 khi \(x = - 1\).
c) Đồ thị hàm số \(y = {x^3} - 3x + 1\) như hình

d) Ta có \({S_{\Delta ABC}} = \frac{1}{2}d\left( {B,AC} \right).AC = \frac{1}{2}.2.1 = 1\).

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.