Đề thi cuối kì 1 Toán 12 Chân trời sáng tạo cấu trúc mới có đáp án (Đề 5)

26 người thi tuần này 4.6 2.5 K lượt thi 22 câu hỏi 60 phút

🔥 Đề thi HOT:

2867 người thi tuần này

5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)

62.7 K lượt thi 126 câu hỏi
1381 người thi tuần này

80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)

14 K lượt thi 20 câu hỏi
1374 người thi tuần này

80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)

13.1 K lượt thi 20 câu hỏi
1042 người thi tuần này

15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)

9.8 K lượt thi 15 câu hỏi
1030 người thi tuần này

7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)

62.6 K lượt thi 304 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Cho hàm số (y = f( x ) có bảng biến thiên như sau  Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Lời giải

Đáp án đúng là: D

Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên khoảng \(\left( {0;1} \right)\).

Câu 2

Giá trị nhỏ nhất trên tập xác định của hàm số có đồ thị sau là

Giá trị nhỏ nhất trên tập xác định của hàm số có đồ thị sau là   (ảnh 1)

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị ta thấy \(\mathop {\min }\limits_D y = - 1\).

Câu 3

Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như sau:

Cho hàm số (y = f( x ) = {ax + b}{cx + d}) có bảng biến thiên như sau:  Đồ thị hàm số có bao nhiêu đường tiệm cận (ảnh 1)

Đồ thị hàm số có bao nhiêu đường tiệm cận

Lời giải

Đáp án đúng là: B

Dựa vào bảng biến thiên ta có:

\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - 3\) nên \(y = - 3\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 3\) nên \(y = 3\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = - \infty \) nên \(x = - 2\) là tiệm cận đứng của đồ thị hàm số.

Câu 4

Đồ thị như hình vẽ là của hàm số

Đồ thị như hình vẽ là của hàm số (ảnh 1)

Lời giải

Đáp án đúng là: B

Dựa vào đồ thị ta thấy đồ thị hàm số nhận \(x = 1\) là tiệm cận đứng và \(y = 1\) là tiệm cận ngang.

Do đó chọn B.

Câu 5

Hàm số \(y = {x^4} - 2{x^2} + 1\) nghịch biến trên các khoảng nào sau đây?

Lời giải

Đáp án đúng là: A

Ta có \(y' = 4{x^3} - 4x\); \(y' = 4{x^3} - 4x = 0 \Leftrightarrow x = 0;x = 1;x = - 1\).

Ta có \(y' < 0\)\( \Leftrightarrow \left[ \begin{array}{l}x < - 1\\0 < x < 1\end{array} \right.\).

Vậy hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {0;1} \right)\).

Câu 6

Hàm số nào sau đây có một đường tiệm cận?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Khi đó, vectơ bằng vectơ \(\overrightarrow {AB} \) là vectơ nào dưới đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 8

Trong không gian \(Oxyz\), cho điểm \(M\left( {1; - 2;3} \right)\). Chọn khẳng định đúng trong các khẳng định sau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 9

Gọi \(G\) là trọng tâm của tứ diện \(ABCD\). Trong các khẳng định sau, khẳng định nào sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;0; - 1} \right)\)\(\overrightarrow v = \left( {2;1; - 2} \right)\). Tích vô hướng \(\overrightarrow u .\overrightarrow v \) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 11

Cho mẫu số liệu ghép nhóm cho bởi bảng như hình sau

Cho mẫu số liệu ghép nhóm cho bởi bảng như hình sau   Khoảng biến thiên của mẫu số liệu  (ảnh 1)

Khoảng biến thiên của mẫu số liệu là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

501 Đánh giá

50%

40%

0%

0%

0%