Câu hỏi:

12/12/2024 2,180

Giả sử doanh số bán hàng (đơn vị triệu đồng) của một sản phẩm mới trong vòng 1 số năm nhất định tuân theo quy luật logistic được mô hình hóa bằng hàm số \(f\left( t \right) = 500\left( {{t^2} + m{e^{ - t}}} \right)\), với \(t \ge 0\) là thời gian tính bằng năm kể từ khi phát hành sản phẩm mới, \(m \le 0\) là tham số. Khi đó đạo hàm \(f'\left( t \right)\) sẽ biểu thị tốc độ bán hàng. Biết rằng tốc độ bán hàng luôn tăng trong khoảng thời gian 10 năm đầu phát hành sản phẩm, khi đó giá trị nhỏ nhất của m bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(f'\left( t \right) = 500\left( {2t - m{e^{ - t}}} \ri[i]ght)\)\(f''\left( t \right) = 500\left( {2 + m{e^{ - t}}} \right)\).

Tốc độ bán hàng luôn tăng trong khoảng thời gian 10 năm đầu phát hành sản phẩm Û \(f'\left( t \right)\) là hàm đồng biến trên \(\left[ {0;10} \right]\)\( \Leftrightarrow f''\left( t \right) \ge 0,\forall t \in \left[ {0;10} \right]\)\( \Leftrightarrow 500\left( {2 + m{e^{ - t}}} \right) \ge 0,\forall t \in \left[ {0;10} \right]\)\( \Leftrightarrow 2 + m{e^{ - t}} \ge 0,\forall t \in \left[ {0;10} \right]\)\( \Leftrightarrow m{e^{ - t}} \ge - 2,\forall t \in \left[ {0;10} \right]\)\( \Leftrightarrow m \ge - 2{e^t},\forall t \in \left[ {0;10} \right]\)\( \Leftrightarrow m \ge - 2{e^0} = - 2,\forall t \in \left[ {0;10} \right]\) (do hàm số \(y = - 2{e^t}\) nghịch biến trên \(\left[ {0;10} \right]\)).

Vậy giá trị nhỏ nhất của m là −2.



[i]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc cân đòn tay đang cân một vật có khối lượng \(m = 3{kg)được thiết kế với đĩa cân được giữ bởi bốn (ảnh 2)

Gọi O là tâm của hình vuông \(ABCD\).

Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)\( \Leftrightarrow 4\overrightarrow {SO} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} \)\( \Rightarrow \left| {4\overrightarrow {SO} } \right| = \left| {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} } \right|\).

Trọng lượng của vật nặng là \(P = mg = 3.10 = 30\)(N). Suy ra \(4\left| {\overrightarrow {SO} } \right| = P = 30 \Rightarrow SO = \frac{{15}}{2}\).

Lại có tam giác \(ASC\) vuông cân tại \(S\) nên \(SA = \frac{{SO}}{{\sin \widehat {SAC}}} = \frac{{\frac{{15}}{2}}}{{\sin 45^\circ }} = \frac{{15\sqrt 2 }}{2} = \frac{{30\sqrt 2 }}{4} \Rightarrow a = 30.\)

Lời giải

a) S, b) S, c) Đ, d) S

a)  \(y' = 3{x^2} - 3\).

\[y' = 0 \Leftrightarrow 3{x^2} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}y\left( { - 1} \right) = 3\\y\left( 1 \right) = - 1\end{array} \right.\].

Ta có bảng biến thiên:

Cho hàm số \(y = {x^3} - 3x + 1\). Xét tính đúng hoặc sai của các mệnh đề sau: (ảnh 2)

Từ bảng biến thiên ta có hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

b) Từ bảng biến thiên ta có trên khoảng \(\left( { - \infty ;1} \right)\) hàm số có giá trị lớn nhất là 3 khi \(x = - 1\).

c) Đồ thị hàm số \(y = {x^3} - 3x + 1\) như hình

Cho hàm số \(y = {x^3} - 3x + 1\). Xét tính đúng hoặc sai của các mệnh đề sau: (ảnh 3)

d) Ta có \({S_{\Delta ABC}} = \frac{1}{2}d\left( {B,AC} \right).AC = \frac{1}{2}.2.1 = 1\).

Cho hàm số \(y = {x^3} - 3x + 1\). Xét tính đúng hoặc sai của các mệnh đề sau: (ảnh 4)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP