Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A, B được cho dưới bảng sau.
Xét tính đúng, sai của các mệnh đề sau
a) Khoảng biến thiên của mẫu số liệu nhà đầu tư vào lĩnh vực A là 25.
b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là 5,83 (làm tròn đến hàng phần trăm).
c) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là 7,01 (làm tròn đến hàng phần trăm).
d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.
Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A, B được cho dưới bảng sau.

Xét tính đúng, sai của các mệnh đề sau
a) Khoảng biến thiên của mẫu số liệu nhà đầu tư vào lĩnh vực A là 25.
b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là 5,83 (làm tròn đến hàng phần trăm).
c) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là 7,01 (làm tròn đến hàng phần trăm).
d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.
Quảng cáo
Trả lời:

a) Đ, b) Đ, c) Đ, d) S
a) Khoảng biến thiên của mẫu số liệu nhà đầu tư vào lĩnh vực A là 30 – 5 = 25.
b) Cỡ mẫu là \({n_1} = 2 + 4 + 7 + 5 + 3 = 21\).
Số trung bình \(\overline {{x_1}} = \frac{{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}}{{21}} = \frac{{255}}{{14}}\).
Phương sai \(s_1^2 = \frac{{7,{5^2}.2 + 12,{5^2}.4 + 17,{5^2}.7 + 22,{5^2}.5 + 27,{5^2}.3}}{{21}} - {\left( {\frac{{255}}{{14}}} \right)^2} = \frac{{5000}}{{147}}\).
Suy ra \({s_1} = \sqrt {\frac{{5000}}{{147}}} \approx 5,83\).
c) Cỡ mẫu là \({n_2} = 5 + 4 + 6 + 2 + 4 = 21\)
Số trung bình \(\overline {{x_2}} = \frac{{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}}{{21}} = \frac{{695}}{{42}}\).
\(s_2^2 = \frac{{7,{5^2}.5 + 12,{5^2}.4 + 17,{5^2}.6 + 22,{5^2}.2 + 27,{5^2}.4}}{{21}} - {\left( {\frac{{695}}{{42}}} \right)^2} = \frac{{21650}}{{441}}\).
Suy ra \({s_2} = \sqrt {\frac{{21650}}{{441}}} \approx 7,01\).
d) Ta có \({s_1} < {s_2}\).
Vậy nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực B có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực A.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi O là tâm của hình vuông \(ABCD\).
Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)\( \Leftrightarrow 4\overrightarrow {SO} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} \)\( \Rightarrow \left| {4\overrightarrow {SO} } \right| = \left| {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} } \right|\).
Trọng lượng của vật nặng là \(P = mg = 3.10 = 30\)(N). Suy ra \(4\left| {\overrightarrow {SO} } \right| = P = 30 \Rightarrow SO = \frac{{15}}{2}\).
Lại có tam giác \(ASC\) vuông cân tại \(S\) nên \(SA = \frac{{SO}}{{\sin \widehat {SAC}}} = \frac{{\frac{{15}}{2}}}{{\sin 45^\circ }} = \frac{{15\sqrt 2 }}{2} = \frac{{30\sqrt 2 }}{4} \Rightarrow a = 30.\)
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3;7} \right)\).
b) \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - 18\) khi \(x = 7\).
c) \( - 17 = f\left( 1 \right) < f\left( 3 \right) = - 13\).
d) Hàm số không có giá trị lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.