Câu hỏi:
13/12/2024 51Trong không gian với hệ trục tọa độ \(Oxyz\), cho các điểm \(A\left( {0;1;2} \right),B\left( {2; - 2;2} \right),C\left( { - 2;0;1} \right)\) và các mặt phẳng \(\left( \alpha \right):3x - 2y + 2z + 7 = 0\) và \(\left( \beta \right):5x - 4y + 3z + 1 = 0\).
a) \(\overrightarrow {AB} = \left( {2; - 3; - 2} \right)\).
b) Mặt phẳng \(\left( \alpha \right):3x - 2y + 2z + 7 = 0\) không đi qua gốc tọa độ.
c) Phương trình mặt phẳng đi qua ba điểm \(A,B,C\) là \(x + 6y - 8z + 1 = 0\).
d) Phương trình mặt phẳng đi qua điểm \(A\left( {0;1;2} \right)\) và vuông góc với hai mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) thì mặt phẳng đi qua điểm \(T\left( {3;3;6} \right)\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
a) S, b) Đ, c) S, d) Đ
a) \(\overrightarrow {AB} = \left( {2; - 3;0} \right)\).
b) Thay tọa độ \(O\) vào phương trình mặt phẳng ta thấy không thỏa mãn.
c) \(\overrightarrow {AB} = \left( {2; - 3;0} \right)\), \(\overrightarrow {AC} = \left( { - 2; - 1; - 1} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {3;2; - 8} \right)\).
Mặt phẳng \(\left( {ABC} \right)\) đi qua \(A\left( {0;1;2} \right)\) và nhận \(\overrightarrow n = \left( {3;2; - 8} \right)\) làm vectơ pháp tuyến có phương trình là \(3x + 2\left( {y - 1} \right) - 8\left( {z - 2} \right) = 0\)\( \Leftrightarrow 3x + 2y - 8z + 8 = 0\).
d) Có \(\overrightarrow {{n_\alpha }} = \left( {3; - 2;2} \right),\overrightarrow {{n_\beta }} = \left( {5; - 4;3} \right)\), \(\left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {{n_\beta }} } \right] = \left( {2;1; - 2} \right)\).
Mặt phẳng \(\left( \gamma \right)\) đi qua điểm \(A\left( {0;1;2} \right)\) và vuông góc với hai mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) nhận \(\overrightarrow {{n_1}} = \left( {2;1; - 2} \right)\) làm vectơ pháp tuyến có phương trình \(2x + \left( {y - 1} \right) - 2\left( {z - 2} \right) = 0\)\( \Leftrightarrow 2x + y - 2z + 3 = 0\).
Thay tọa độ điểm \(T\left( {3;3;6} \right)\) vào phương trình mặt phẳng \(\left( \gamma \right)\) ta được
\(2.3 + 3 - 2.6 + 3 = 0\).
Vậy mặt phẳng \(\left( \gamma \right)\) đi qua điểm \(T\left( {3;3;6} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Sau khi xuất phát, ô tô di chuyển với tốc độ \(v\left( t \right) = 2,01t - 0,025{t^2}\left( {0 \le t \le 10} \right)\). Trong đó \(v\left( t \right)\)tính theo m/s, thời gian \(t\) tính theo giây với \(t = 0\) là thời điểm xe xuất phát.
a) Quãng đường xe di chuyển được tính theo công thức là \(s\left( t \right) = 2,01 - 0,05t\left( {0 \le t \le 10} \right)\).
b) Quãng đường xe di chuyển được trong 3 giây là 8,82 m.
c) Quãng đường xe di chuyển được trong giây thứ 9 xấp xỉ \(15,277\)m.
d) Trong khoảng thời gian không quá 10 giây đầu, khi vận tốc đạt giá trị lớn nhất thì gia tốc của xe là \(1,51\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).
Câu 2:
Ông \(A\) có một cái cổng hình chữ nhật, lối vào cổng có dạng parabol có kích thước như hình vẽ. Ông \(A\) cần trang trí bề mặt (phần gạch chéo) của cổng. Ông \(A\) cần bao nhiêu tiền để trang trí, biết giá thành trang trí là \(1200000\)đồng\(/{\rm{1}}{{\rm{m}}^{\rm{2}}}\) (đơn vị triệu đồng)?
Câu 3:
Trong không gian \(Oxyz\), mặt phẳng đi qua \(O\) và nhận vectơ \(\overrightarrow n = \left( {1;\, - 2;\,5} \right)\) làm vectơ pháp tuyến có phương trình là
Câu 4:
Cho \(f\left( x \right)\) là hàm số liên tục trên đoạn \(\left[ {1;2} \right]\). Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {1;2} \right]\) thỏa mãn \(F\left( 1 \right) = - 2\) và \(F\left( 2 \right) = 4\). Khi đó \(\int\limits_1^2 {f\left( x \right){\rm{d}}} x\) bằng
Câu 5:
Hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có \(f\left( 0 \right) = 2\) và \(f\left( {4x} \right) - f\left( x \right) = 4{x^3} + 2x,\,\forall x \in \mathbb{R}.\) Tính \(I = \int\limits_0^1 {f\left( x \right)dx} \) (kết quả làm tròn đến hàng phần trăm).
Câu 6:
Cho hàm số \[f(x)\]có \[f\left( {\frac{\pi }{2}} \right) = 4\]và\(f'\left( x \right) = \frac{2}{{{{\sin }^2}x}} + 1,\forall x \in \left( {0;\pi } \right)\).
Biết \(f\left( x \right) = - a\cot x + x + b + \frac{\pi }{c}\). Tính \(a + b + c.\)
Câu 7:
Trong không gian \(Oxyz\), cho \(A\left( {2;0;0} \right),B\left( {0;4;0} \right),C\left( {0;0;6} \right),D\left( {2;4;6} \right)\). Gọi \(\left( P \right)\) là mặt phẳng song song song với mặt phẳng \(\left( {ABC} \right)\), \(\left( P \right)\) cách đều \(D\) và mặt phẳng \(\left( {ABC} \right)\) có dạng \(6x + by + cz + d = 0\). Tính \(b + c + d\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
về câu hỏi!