Câu hỏi:
13/12/2024 603Cho hàm số \[f(x)\]có \[f\left( {\frac{\pi }{2}} \right) = 4\]và\(f'\left( x \right) = \frac{2}{{{{\sin }^2}x}} + 1,\forall x \in \left( {0;\pi } \right)\).
Biết \(f\left( x \right) = - a\cot x + x + b + \frac{\pi }{c}\). Tính \(a + b + c.\)
Quảng cáo
Trả lời:
Ta có: \[\int {f'\left( x \right){\rm{d}}x} = \int {\left( {\frac{2}{{{{\sin }^2}x}} + 1} \right)} dx = - 2\cot x + x + C = f(x)\].
\[f\left( {\frac{\pi }{2}} \right) = 4 \Leftrightarrow C = 4 - \frac{\pi }{2} \Rightarrow f\left( x \right) = - 2\cot x + x + 4 - \frac{\pi }{2}\].
Suy ra \(a = 2;b = 4;c = - 2 \Rightarrow a + b + c = 4\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) Đ, d) Đ
a) Có \(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {2,01t - 0,025{t^2}} \right)dt} = 1,005{t^2} - \frac{{{t^3}}}{{120}} + C\).
Vì \(s\left( 0 \right) = 0 \Rightarrow C = 0\). Do đó \(s\left( t \right) = 1,005{t^2} - \frac{{{t^3}}}{{120}}\).
b) Quãng đường xe di chuyển trong 3 giây là:
\(s = \int\limits_0^3 {\left( {2,01t - 0,025{t^2}} \right)dt} = \left. {\left( {1,005{t^2} - \frac{{{t^3}}}{{120}}} \right)} \right|_0^3 = 8,82\).
c) Quãng đường xe di chuyển trong giây thứ 9 là:
\(s = \int\limits_8^9 {\left( {2,01t - 0,025{t^2}} \right)dt} = \left. {\left( {1,005{t^2} - \frac{{{t^3}}}{{120}}} \right)} \right|_8^9 \approx 15,277\).
d) Ta có \(v\left( t \right) = 2,01t - 0,025{t^2}\left( {0 \le t \le 10} \right)\)\( \Rightarrow \mathop {\max }\limits_{\left[ {0;10} \right]} v\left( t \right) = 17,6\;{\rm{m/s}}\) khi \(t = 10{\rm{s}}\).
Gia tốc vật khi đó là \(a\left( {10} \right) = v'\left( {10} \right) = 2,01 - 0,05.10 = 1,51\)(m/s2).
Lời giải
Chọn hệ trục tọa độ như hình vẽ, khi đó \(\left( P \right)\) có phương trình dạng: \(y = a{x^2} + b\).
Khi đó: \(\left( {\frac{5}{2};0} \right)\,;\,\left( {0;5} \right) \in \left( P \right)\) nên ta có hệ phương trình:
\(\left\{ \begin{array}{l}0 = a.{\left( {\frac{5}{2}} \right)^2} + b\\5 = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{ - 4}}{5}\\b = 5\end{array} \right.\) hay \(\left( P \right):y = - \frac{4}{5}{x^2} + 5\).
Khi đó diện tích phần cổng \(\left( P \right)\) là: \({S_1} = \int\limits_{ - \frac{5}{2}}^{\frac{5}{2}} {\left( { - \frac{4}{5}{x^2} + 5} \right)dx} = \frac{{50}}{3}\).
Suy ra diện tích phần cần trang trí là: \({S_2} = 5.6 - \frac{{50}}{3} = \frac{{40}}{3}\).
Vậy số tiền cần dùng để trang trí là: \(T = 1\,200\,000.\,\,\frac{{40}}{3} = 16\,000\,000\)(đồng) = 16 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận