Câu hỏi:
14/12/2024 97Trong không gian với hệ trục tọa độ \(Oxyz\), mặt phẳng \(\left( \alpha \right)\)qua hai điểm \(A\left( {1;2;1} \right),B\left( { - 2;1;3} \right)\) và cách đều hai điểm \(C\left( {2; - 1;3} \right),D\left( {0;3;1} \right)\) có dạng \(3x + by + cz + d = 0\).
a) Điểm \(A\left( {1;2;1} \right)\) cách mặt phẳng \(\left( {Oxy} \right)\) một khoảng bằng 1.
b) \(I\left( {1;1;2} \right)\) là trung điểm đoạn thẳng \(CD\).
c) Nếu \(\left( \alpha \right)//CD\) thì \(2b - 3c + d = - 31\).
d) Nếu \(\left( \alpha \right)\) đi qua trung điểm \(I\left( {1;1;2} \right)\) của \(CD\) thì \(2b - 3c + d = - 16\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) Đ, d) S
a) Mặt phẳng \(\left( {Oxy} \right):z = 0\).
\(d\left( {A,Oxy} \right) = \frac{{\left| 1 \right|}}{{\sqrt {{1^2}} }} = 1\).
b) \(I\left( {1;1;2} \right)\) là trung điểm đoạn thẳng \(CD\).
c) Ta có \(\overrightarrow {AB} = \left( { - 3; - 1;2} \right)\), \(\overrightarrow {CD} = \left( { - 2;4; - 2} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( { - 6; - 10; - 14} \right) = - 2\left( {3;5;7} \right)\).
Mặt phẳng \(\left( \alpha \right)\)qua hai điểm \(A\left( {1;2;1} \right),B\left( { - 2;1;3} \right)\) và \(\left( \alpha \right)//CD\) có một vectơ pháp tuyến là \(\overrightarrow {{n_\alpha }} = \left( {3;5;7} \right)\) có phương trình \(3\left( {x - 1} \right) + 5\left( {y - 2} \right) + 7\left( {z - 1} \right) = 0\) hay \(3x + 5y + 7z - 20 = 0\).
Suy ra \(b = 5;c = 7;d = - 20\). Do đó \(2b - 3c + d = - 31\).
d) Ta có \(\overrightarrow {IA} = \left( {0;1; - 1} \right),\overrightarrow {IB} = \left( { - 3;0;1} \right)\), \(\left[ {\overrightarrow {IA} ,\overrightarrow {IB} } \right] = \left( {1;3;3} \right)\).
Nếu \(\left( \alpha \right)\) đi qua trung điểm \(I\left( {1;1;2} \right)\) và có một vectơ pháp tuyến \(\overrightarrow n = \left( {1;3;3} \right)\) có phương trình là: \(\left( {x - 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0\) hay \(x + 3y + 3z - 10 = 0\)\( \Leftrightarrow 3x + 9y + 9z - 30 = 0\).
Suy ra \(b = 9;c = 9;d = - 30\). Do đó \(2b - 3c + d = - 39\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết \(\int\limits_0^{\frac{\pi }{3}} {\frac{{1 - \cos 2x}}{{1 + \cos 2x}}dx} = a\sqrt 3 + \frac{\pi }{b}\) \(\left( {a,{\mkern 1mu} {\mkern 1mu} b \in \mathbb{Z}} \right)\). Tính \(a + b\).
Câu 2:
Biết \(F\left( x \right) = {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\). Giá trị của \(\int\limits_1^3 {\left[ {1 + f(x)} \right]dx} \) bằng
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có \(\int {f\left( x \right)dx} = x\sin x + C\). Tính \(f\left( {\frac{\pi }{2}} \right)\).
Câu 4:
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = AA' = 2a,AD = 4a.\) Với \(a = 3\), tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {AB'D'} \right)\).
Câu 5:
Cắt một vật thể bởi hai mặt phẳng vuông góc với trục \[Ox\] tại \(x = 1\) và \(x = 2\). Một mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \(x\) (\(1 \le x \le 2\)) cắt vật thể đó có diện tích \(S\left( x \right) = 2024x\). Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên.
Câu 6:
Trong không gian \(Oxyz\), cho điểm \(M\left( {2; - 1;3} \right)\) và mặt phẳng \(\left( P \right):3x - 2y + z + 1 = 0\). Phương trình mặt phẳng đi qua \(M\) và song song với \(\left( P \right)\) là
Câu 7:
Từ một khúc gỗ hình trụ có đường kính 30 cm, người ta cắt khúc gỗ bởi một mặt phẳng đi qua đường kính đáy và nghiêng với đáy một góc \(45^\circ \) để lấy một hình nêm (xem hình minh họa).
Tính thể tích của hình nêm (đơn vị cm3).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
về câu hỏi!