Câu hỏi:

14/12/2024 1,639

Cho hàm số \(f\left( x \right) = 2x + {e^x}\). Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2025\).

a) \(f\left( 2 \right) = 4 + e\).

b) \(\int {f\left( x \right)dx} = \int {\left( {2x + {e^x}} \right)dx} = {x^2} + {e^x} + C\).

c) \(F\left( x \right) = {x^2} + {e^x} + 2024\).

d) \(\int {xf'\left( {{x^2}} \right)dx} = \int {x\left( {2 + {e^{{x^2}}}} \right)dx = {x^2} + x{e^{{x^2}}} + C} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S

a) \(f\left( 2 \right) = 2.2 + {e^2} = 4 + {e^2}\).

b) \(\int {f\left( x \right)dx} = \int {\left( {2x + {e^x}} \right)dx} = {x^2} + {e^x} + C\).

c) \(F\left( x \right) = \int {f\left( x \right)dx} = {x^2} + {e^x} + C\)\(F\left( 0 \right) = 2025\) nên \(1 + C = 2025 \Leftrightarrow C = 2024\).

Vậy \(F\left( x \right) = {x^2} + {e^x} + 2024\).

d) \(f'\left( x \right) = 2 + {e^x}\)

Ta có \(\int {xf'\left( {{x^2}} \right)dx} = \int {x\left( {2 + {e^{{x^2}}}} \right)dx = \int {2xdx} + \int {x{e^{{x^2}}}dx} = {x^2} + \frac{1}{2}{e^{{x^2}}} + C} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ.

Cho tứ diện \[OABC\], có \[OA,OB,OC\]đôi một vuông góc và \[OA = 5,OB = 2,OC = 4\]. Gọi \[M,N\] lần lượt là trung điểm (ảnh 1)

Ta có \[O\left( {0;0;0} \right)\], \[A \in Oz,\;B \in Ox,\;C \in Oy\]sao cho \[AO = 5,\;OB = 2,\;OC = 4\]

\[ \Rightarrow A\left( {0;0;5} \right),\;B\left( {2;0;0} \right),\;C\left( {0;4;0} \right)\].

Khi đó: \[G\] là trọng tâm tam giác\[ABC\] nên \[G\left( {\frac{2}{3};\frac{4}{3};\frac{5}{3}} \right)\]

\[M\]là trung điểm \[OB\]nên \[M\left( {1;0;0} \right)\]

\[N\]là trung điểm \[OC\]nên \[N\left( {0;2;0} \right)\].

Phương trình mặt phẳng \[\left( {AMN} \right)\]là: \[\frac{x}{1} + \frac{y}{2} + \frac{z}{5} = 1\] hay \[10x + 5y + 2z - 10 = 0\]

Vậy khoảng cách từ \[G\] đến mặt phẳng \[\left( {AMN} \right)\]là:

\[d\left( {G,\left( {AMN} \right)} \right) = \frac{{\left| {\frac{{20}}{3} + \frac{{20}}{3} + \frac{{10}}{3} - 10} \right|}}{{\sqrt {100 + 25 + 4} }} = \frac{{20}}{{3\sqrt {129} }} \approx 0,59\].

Lời giải

\(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\sin 2xdx} = - \frac{{\cos 2x}}{2} + C\).

\(f\left( {\frac{\pi }{4}} \right) = 0 \Rightarrow C = 0\).

Do đó \(f\left( x \right) = - \frac{{\cos 2x}}{2}\).

Lại có \(F\left( x \right) = \int {f\left( x \right)dx} = - \int {\frac{{\cos 2x}}{2}dx = - \frac{1}{4}\sin 2x + {C_1}} \).

\(F\left( {\frac{\pi }{2}} \right) = 2\) nên \( - \frac{1}{4}\sin \left( {2.\frac{\pi }{2}} \right) + {C_1} = 2 \Rightarrow {C_1} = 2\).

Vậy \(F\left( x \right) = - \frac{1}{4}\sin 2x + 2\). Do đó \(F\left( {\frac{\pi }{4}} \right) = - \frac{1}{4}\sin \left( {2.\frac{\pi }{4}} \right) + 2 = \frac{{ - 1}}{4} + 2 = \frac{7}{4} = 1,75\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP