Câu hỏi:

14/12/2024 552

Cho \(y = f\left( x \right)\) là hàm số bậc hai có đồ thị \(\left( P \right)\) như hình vẽ bên. Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi \(\left( P \right)\) với trục hoành.

Cho \(y = f( x )\) là hàm số bậc hai có đồ thị ( P)\) như hình vẽ bên. Gọi (ảnh 1)

a) Hoành độ giao điểm của parabol với trục hoành là \(x = 1\)\(x = 2\).

b) Phương trình của parabol là \(y = 2x - {x^2}\).

c) Diện tích của hình \(\left( H \right)\) bằng \(\frac{2}{3}\).

d) Khi cho hình \(\left( H \right)\) xoay quanh trục \(Ox\) ta được một vật thể có thể tích bằng \(\frac{{16}}{{15}}\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) S, d) S

a) Dựa vào đồ thị ta thấy hoành độ giao điểm của parabol với trục hoành là \(x = 0\)\(x = 2\).

b) Giả sử \(\left( P \right):y = a{x^2} + bx\) (vì \(\left( P \right)\) đi qua gốc tọa độ nên \(c = 0\)).

\(\left( P \right)\) đi qua \(\left( {2;0} \right)\)\(\left( {1;1} \right)\) nên ta có hệ \(\left\{ \begin{array}{l}4a + 2b = 0\\a + b = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 2\end{array} \right.\).

Do đó \(\left( P \right):y = - {x^2} + 2x\).

c) \(S = \int\limits_0^2 {\left| { - {x^2} + 2x} \right|dx} \)\( = \int\limits_0^2 {\left( { - {x^2} + 2x} \right)dx} \)\( = \frac{4}{3}\).

d) \(V = \pi \int\limits_0^2 {{{\left( { - {x^2} + 2x} \right)}^2}dx} \)\( = \frac{{16\pi }}{{15}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện \[OABC\], có \[OA,OB,OC\]đôi một vuông góc và \[OA = 5,OB = 2,OC = 4\]. Gọi \[M,N\] lần lượt là trung điểm của \[OB\]\[OC\]. Gọi \[G\] là trọng tâm của tam giác \[ABC\]. Tính khoảng cách từ \[G\] đến mặt phẳng \[\left( {AMN} \right)\] (kết quả làm tròn đến hàng phần trăm).

Xem đáp án » 14/12/2024 3,757

Câu 2:

Cho hàm số \(f\left( x \right) = 3{x^2} + 2x\). Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\).

Xem đáp án » 14/12/2024 1,528

Câu 3:

Cho hàm số \(f\left( x \right)\) liên tục và không âm trên đoạn \(\left[ {0;3} \right]\). \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) thỏa mãn \(F\left( 3 \right) = 2;F\left( 0 \right) = 1\).

a) Hiệu số \(F\left( 3 \right) - F\left( 0 \right)\) gọi là tích phân từ 3 đến 0 của hàm số \(f\left( x \right)\).

b) \(\int\limits_0^3 {f\left( x \right)} dx = - \int\limits_3^0 {f\left( x \right)} dx = F\left( 3 \right) - F\left( 0 \right)\).

c) \(\int\limits_0^3 {f\left( t \right)} dt = 1\).

d) Hình thang cong giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = 0;x = 3\) có diện tích bằng 1.

Xem đáp án » 14/12/2024 671

Câu 4:

Trong không gian \(Oxyz\), cho điểm \(A\left( {2; - 1; - 3} \right)\) và mặt phẳng \(\left( P \right):3x - 2y + 4z - 5 = 0\). Mặt phẳng \(\left( Q \right)\) đi qua \(A\) và song song với mặt phẳng \(\left( P \right)\) có phương trình:

Xem đáp án » 14/12/2024 668

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = \sin 2x,\forall x \in \mathbb{R}\)\(f\left( {\frac{\pi }{4}} \right) = 0\). Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( {\frac{\pi }{2}} \right) = 2\). Khi đó \(F\left( {\frac{\pi }{4}} \right)\) bằng bao nhiêu?

Xem đáp án » 14/12/2024 605

Câu 6:

Cho hàm số \(f\left( x \right) = 2x + {e^x}\). Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2025\).

a) \(f\left( 2 \right) = 4 + e\).

b) \(\int {f\left( x \right)dx} = \int {\left( {2x + {e^x}} \right)dx} = {x^2} + {e^x} + C\).

c) \(F\left( x \right) = {x^2} + {e^x} + 2024\).

d) \(\int {xf'\left( {{x^2}} \right)dx} = \int {x\left( {2 + {e^{{x^2}}}} \right)dx = {x^2} + x{e^{{x^2}}} + C} \).

Xem đáp án » 14/12/2024 514

Bình luận


Bình luận