Câu hỏi:

12/01/2025 289

Cho hình chóp đều \(S.ABCD\)có chiều cao \(\sqrt 3 ,\,\,AC = 2\sqrt 3 \). Tính khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SCD} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 2

Cho hình chóp đều  S . A B C D có chiều cao  √ 3 , A C = 2 √ 3 . Tính khoảng cách từ điểm  B  đến mặt phẳng  ( S C D ) . (ảnh 1)

Gọi

\(O = AC \cap BD\), \(H\) là trung điểm \(CD\). Trong \(\left( {SOH} \right)\), kẻ \(OI \bot SH\).

Có \(\left\{ \begin{array}{l}CD \bot SO\\CD \bot OH\end{array} \right. \Rightarrow CD \bot \left( {SOH} \right) \Rightarrow CD \bot OI\).

Mà \(OI \bot SH\) nên \(OI \bot \left( {SCD} \right)\) \( \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = OI\).

Vì O là trung điểm BD nên \(d\left( {B,\left( {SCD} \right)} \right) = 2d\left( {O,\left( {SCD} \right)} \right) = 2OI = \frac{{2SO.OH}}{{\sqrt {S{O^2} + O{H^2}} }}\).

Có \(AD = AC\sin 45^\circ = \sqrt 6 \), \(OH = \frac{{\sqrt 6 }}{2}\) \( \Rightarrow d\left( {B,\left( {SCD} \right)} \right) = 2\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

PHẦN II. TỰ LUẬN

Với \(a,b\) là các số thực dương tùy ý thỏa mãn \(a \ne 1\) và \({\log _a}b = 2\). Tính giá trị của \({\log _{{a^2}}}\left( {a{b^2}} \right)\).

Xem đáp án » 12/01/2025 12,627

Câu 2:

Cho hình chóp \(S.ABC\), có đáy \(ABC\) là tam giác đều cạnh \(a\). Biết cạnh bên \(SA\) vuông góc với đáy và \(SA = \frac{{a\sqrt 3 }}{2}\) (tham khảo hình vẽ).

Cho hình chóp  S . A B C , có đáy  A B C  là tam giác đều cạnh  a . Biết cạnh bên  S A  vuông góc với đáy và  S A = a √ 3 2  (tham khảo hình vẽ).    Số đo của góc phẳng nhị diện  [ S , B C , A ]  bằng (ảnh 1)

Số đo của góc phẳng nhị diện \(\left[ {S,BC,A} \right]\) bằng

Xem đáp án » 12/01/2025 2,636

Câu 3:

Cho hình chóp \(S.ABCD\) có \(SA\, \bot \,\left( {ABCD} \right)\). Khẳng định nào sau đây sai.

Cho hình chóp  S . A B C D  có  S A ⊥ ( A B C D ) . Khẳng định nào sau đây sai. (ảnh 1)

Xem đáp án » 12/01/2025 1,663

Câu 4:

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(H,K\) theo thứ tự là hình chiếu của \(A\) trên các cạnh \(SB,SD\).

a) \(BC \bot SA\).

b) Tam giác \(SCD\) vuông.

c) \(SC \bot \left( {AHK} \right)\).

d) \(HK \bot SC\).

Xem đáp án » 12/01/2025 1,048

Câu 5:

Cho hình chóp \(S.ABC\) có \(SA\, \bot \,\left( {ABC} \right)\), góc giữa \(SB\) và mặt phẳng \(\left( {ABC} \right)\) là.

Cho hình chóp  S . A B C  có  S A ⊥ ( A B C ) , góc giữa  S B  và mặt phẳng  ( A B C )  là. (ảnh 1)

Xem đáp án » 12/01/2025 705

Câu 6:

Viết biểu thức \(P = \frac{{{a^2}{a^{\frac{5}{2}}}\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^7}}}}}\), (\(a > 0\)) dưới dạng lũy thừa với số mũ hữu tỉ.

Xem đáp án » 12/01/2025 686

Câu 7:

Mức cường độ âm \(L\) đo bằng decibel (viết tắt là dB, đọc là đề - xi – ben) của âm thanh có cường độ \(I\) (đo bằng oát trên mét vuông, kí hiệu là \({\rm{W/}}{{\rm{m}}^{\rm{2}}}\)) được định nghĩa \(L = 10\log \frac{I}{{{I_0}}}\), trong đó \({I_0} = {10^{ - 12}}{\rm{W/}}{{\rm{m}}^{\rm{2}}}\) là cường độ âm thanh nhỏ nhất mà tai người có thể phát hiện được (gọi là ngưỡng nghe). Xác định mức cường độ âm của âm thanh giao thông thành phố đông đúc có cường độ \(I = {10^{ - 3}}{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).

Xem đáp án » 12/01/2025 591
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua