Câu hỏi:
12/01/2025 329
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 13 đến câu 14. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho các đồ thị hàm số \(y = {\log _a}x;y = {\log _b}x;y = {\log _c}x\) như hình vẽ.
a) \(a > 1\).
b) \(0 < c < 1 < a < b\).
c) \({\left( {{a^3}.\sqrt a } \right)^{{{\log }_a}b}} = \sqrt[3]{{{b^2}}}\).
d) \(P = \log \frac{a}{b} + \log \frac{b}{c} + \log \frac{c}{d} - \log \frac{a}{d} > 0\) với \(d > 0\).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) Đ, c) S, d) S
a) Hàm số \(y = {\log _a}x\) đồng biến nên \(a > 1\).
b) Hàm số \(y = {\log _c}x\) nghịch biến nên \(0 < c < 1;\)Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) nên \(a > 1,b > 1.\)</>
Xét \(x > 1\)thì \({\log _a}x > {\log _b}x\)\( \Leftrightarrow {\log _a}x > \frac{1}{{{{\log }_x}b}}\)\( \Leftrightarrow {\log _a}x{\log _x}b > 1\)\( \Leftrightarrow {\log _a}b > 1\)\( \Leftrightarrow a < b\).
c) \({\left( {{a^3}.\sqrt a } \right)^{{{\log }_a}b}}\)\( = {a^{\frac{7}{2}{{\log }_a}b}} = {b^{\frac{7}{2}}} = \sqrt {{b^7}} \).
d) \(P = \log \frac{a}{b} + \log \frac{b}{c} + \log \frac{c}{d} - \log \frac{a}{d}\)\( = \log \left[ {\left( {\frac{a}{b}.\frac{b}{c}.\frac{c}{d}} \right):\frac{a}{d}} \right] = \log 1 = 0\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Trả lời: 30
Giả sử kim tự tháp có dạng hình chóp đều \(S.ABCD\) như hình vẽ
Gọi \(H\) là trung điểm của \(CD\).
Ta có \(OH \bot CD,SH \bot CD\).
Do đó góc mặt bên kim tự tháp và mặt đất là \(\widehat {SHO}\).
Có \(OH = \frac{1}{2}AD = 30\).
Xét \(\Delta SOH\) vuông tại \(O\), ta có \(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \frac{{10\sqrt 3 }}{{30}} = \frac{{\sqrt 3 }}{3} \Rightarrow \widehat {SHO} = 30^\circ \).
Lời giải
Hướng dẫn giải
Trong mặt phẳng \(\left( {ABCD} \right)\), xét tam giác vuông \(ADH\) và tam giác vuông \(DCM\) có:
\(AD = CD;AH = DM\). Suy ra \(\Delta ADH = \Delta DCM \Rightarrow \widehat {ADH} = \widehat {DCM}\).
Mà \(\widehat {DCM} + \widehat {DMC} = 90^\circ \Rightarrow \widehat {ADH} + \widehat {DMC} = 90^\circ \Rightarrow CM \bot DH\) (1).
Lại có \(SH \bot \left( {ABCD} \right) \Rightarrow CM \bot SH\) (2).
Từ (1) và (2) suy ra \(CM \bot \left( {SDH} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.