Câu hỏi:

23/01/2025 911

Một đài quan sát \(O\) cách ba vị trí \(A,B,C\) như hình vẽ dưới đây thỏa mãn \(OB = x\;{\rm{km}}\), \(OC = x + 1\;{\rm{km}}\)\(OA = 2\;{\rm{km}}\). Tìm \(x\) biết khoảng cách từ vị trí \(A\) đến vị trí \(C\) gấp đôi khoảng cách từ vị trí \(A\) đến vị trí \(B\) và khoảng cách từ \(O\) đến \(B\) ngắn hơn khoảng cách từ \(O\) đến \(A\).

Một đài quan sát \(O\) cách ba vị trí \(A,B,C\) như hình vẽ dưới đây thỏa mãn \(OB = x\;{\rm{km}}\) (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét \(\Delta AOC\)\(A{C^2} = O{A^2} + O{C^2} - 2.OA.OC.\cos 120^\circ  = 4 + {\left( {x + 1} \right)^2} + 2.\left( {x + 1} \right) = {x^2} + 4x + 7\).

Suy ra \(AC = \sqrt {{x^2} + 4x + 7} \).

Xét \(\Delta ABO\)\(AB = \sqrt {O{A^2} - O{B^2}} = \sqrt {4 - {x^2}} \).

\(AC = 2AB\) nên \(\sqrt {{x^2} + 4x + 7} = 2\sqrt {4 - {x^2}} \)

Bình phương 2 vế của phương trình trên ta được:

\({x^2} + 4x + 7 = 4\left( {4 - {x^2}} \right)\)\( \Leftrightarrow 5{x^2} + 4x - 9 = 0\)\( \Leftrightarrow x = 1\) hoặc \(x = - \frac{9}{5}\).

Thay lần lượt các giá trị của \(x\) vào phương trình ta thấy \(x = 1\)\(x = - \frac{9}{5}\) đều là nghiệm của phương trình.

\(x > 0\) nên \(x = 1\) thỏa mãn \(OB < OA\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập xác định của hàm số \(y = \sqrt { - {x^2} + 2x + 3} \)

Xem đáp án » 23/01/2025 3,024

Câu 2:

Phương trình đường thẳng đi qua hai điểm \(M\left( { - 1;0} \right),N\left( {3;1} \right)\)

Xem đáp án » 23/01/2025 1,572

Câu 3:

Bảng giá cước gọi quốc tế của công ty viễn thông \(A\) được cho bởi bảng sau

Bảng giá cước gọi quốc tế của công ty viễn thông \(A\) được cho bởi bảng sau (ảnh 1)

Ông An thực hiện 1 cuộc gọi quốc tế 31 phút, sau đó ông gặp sự cố bị ngắt kết nối nên ông phải thực hiện lại thêm 1 cuộc gọi quốc tế 12 phút nữa. Tổng số tiền cước ông An phải trả là bao nhiêu nghìn đồng?

Xem đáp án » 23/01/2025 1,506

Câu 4:

Tìm tọa độ đỉnh của parabol \(y = {x^2} - 4x + 5\).

Xem đáp án » 23/01/2025 1,503

Câu 5:

Trong mặt phẳng \(Oxy\), đường thẳng \(d:x - 2y - 1 = 0\) song song với đường thẳng có phương trình nào sau đây?

Xem đáp án » 23/01/2025 1,095

Câu 6:

Cho hai điểm \(A\left( {3; - 3} \right),B\left( { - 1; - 5} \right)\) và đường thẳng \(\left( d \right):4x - 3y - 2 = 0\).

a) Một vectơ pháp tuyến của đường thẳng \(d\)\(\overrightarrow {{n_d}} = \left( {4; - 3} \right)\).

b) Đường thẳng đi qua điểm \(A\) và vuông góc với \(\left( d \right)\) có phương trình \(4x + 3y = 3\).

c) Khoảng cách từ \(A\) tới \(\left( d \right)\) nhỏ hơn khoảng cách từ \(B\) tới \(\left( d \right)\).

d) Cosin của góc tạo bởi \(\left( d \right)\) và đường thẳng \(AB\) bằng \(\frac{2}{{\sqrt 5 }}\).

Xem đáp án » 23/01/2025 670
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay