Câu hỏi:

23/01/2025 443

Trong mặt phẳng \(Oxy\), cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 6x + 2y + 6 = 0\) và hai điểm \(A\left( {1; - 1} \right),B\left( {1;3} \right)\).

a) Điểm \(A\) thuộc đường tròn.

b) Điểm \(B\) nằm trong đường tròn.

c) \(x = 1\) phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(A\).

d) Qua \(B\) kẻ được hai tiếp tuyến với \(\left( C \right)\) có phương trình lần lượt là \(x = 1\)\(3x + 4y - 12 = 0\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) S

Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 1} \right);R = 2\).

a) Ta có \(IA = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 1 + 1} \right)}^2}}  = 2 = R\). Suy ra điểm \(A\) thuộc đường tròn.

b) Ta có \(IB = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {3 + 1} \right)}^2}} = 2\sqrt 5 > R\). Suy ra điểm \(B\) nằm ngoài đường tròn.

c) Có \(\overrightarrow {IA} = \left( { - 2;0} \right)\).

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(A\) đi qua \(A\left( {1; - 1} \right)\) và nhận \(\overrightarrow n = \left( { - 1;0} \right)\) làm vectơ pháp tuyến có phương trình là \( - \left( {x - 1} \right) = 0 \Leftrightarrow x = 1\).

d) Giả sử tiếp tuyến qua \(B\) nhận \(\overrightarrow n = \left( {a;b} \right)\) làm vectơ pháp tuyến có phương trình là

\(a\left( {x - 1} \right) + b\left( {y - 3} \right) = 0\)\( \Leftrightarrow ax + by - a - 3b = 0\;\left( {\rm{d}} \right)\).

\(d\left( {I,\left( d \right)} \right) = R\)\( \Leftrightarrow \frac{{\left| {a.3 + b.\left( { - 1} \right) - a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow \left| {2a - 4b} \right| = 2\sqrt {{a^2} + {b^2}} \)\( \Leftrightarrow \left| {a - 2b} \right| = \sqrt {{a^2} + {b^2}} \)

\( \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) = {a^2} + {b^2}\)\( \Leftrightarrow - 4ab + 3{b^2} = 0\)\( \Leftrightarrow b\left( {3b - 4a} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}b = 0\\a = \frac{3}{4}b\end{array} \right.\).

TH1: \(b = 0\) chọn \(a = 1\). Suy ra phương trình tiếp tuyến cần tìm là \(x - 1 = 0\).

TH2: Chọn \(b = 4 \Rightarrow a = 3\). Suy ra phương trình tiếp tuyến cần tìm là \(3x + 4y - 15 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biểu thức nào sau đây không là hàm số theo biến \(x\)?

Xem đáp án » 23/01/2025 506

Câu 2:

Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên dưới. Khẳng định nào sau đây đúng?

Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên dưới. Khẳng định nào sau đây đúng? (ảnh 1)

Xem đáp án » 23/01/2025 451

Câu 3:

Tổng tất cả các nghiệm của phương trình \(\sqrt {{x^2} + 2x - 3} = \sqrt {15 - 5x} \)

Xem đáp án » 23/01/2025 304

Câu 4:

Một quả bóng được ném thẳng lên từ độ cao 1,6 m so với mặt đất với vận tốc 10 m/s. Độ cao của bóng so với mặt đất (tính bằng mét) sau t giây được cho bởi hàm số \(h\left( t \right) = - 4,9{t^2} + 10t + 1,6\). Hỏi bóng ở độ cao trên 5 m trong khoảng thời gian bao nhiêu giây? (làm tròn kết quả đến hàng phần trăm).

Xem đáp án » 23/01/2025 174

Câu 5:

Giá trị \(x = 2\) là nghiệm của phương trình nào sau đây?

Xem đáp án » 23/01/2025 161

Câu 6:

Một quả bóng được ném thẳng lên từ độ cao 1,6 m so với mặt đất với vận tốc 10 m/s. Độ cao của bóng so với mặt đất (tính bằng mét) sau t giây được cho bởi hàm số \(h\left( t \right) = - 4,9{t^2} + 10t + 1,6\). Hỏi bóng ở độ cao trên 5 m trong khoảng thời gian bao nhiêu giây? (làm tròn kết quả đến hàng phần trăm).

Xem đáp án » 23/01/2025 159

Bình luận


Bình luận