Câu hỏi:

23/01/2025 2,384

Trong mặt phẳng tọa độ \(\left( {Oxy} \right),\) cho điểm \(I\left( { - 2;\;1} \right)\) và đường thẳng \(\Delta :4x + 3y + 1 = 0.\) Tìm bán kính của đường tròn có tâm \(I\) và cắt đường thẳng \(\Delta \) tại hai điểm \(A,B\) sao cho tam giác \(IAB\) vuông (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời: 1,13

Ta có khoảng cách từ \(I\) đến \(\Delta \) là: \(d = \frac{4}{5}.\)

Gọi \(R\) là bán kính của đường tròn.

Theo giả thiết ta có tam giác \(IAB\) vuông cân tại \(I\) nên:

\(AB = 2d = \frac{8}{5};\;R = IA = \frac{{AB.\sqrt 2 }}{2} = \frac{{4\sqrt 2 }}{5} \approx 1,13.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) S

Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 1} \right);R = 2\).

a) Ta có \(IA = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 1 + 1} \right)}^2}}  = 2 = R\). Suy ra điểm \(A\) thuộc đường tròn.

b) Ta có \(IB = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {3 + 1} \right)}^2}} = 2\sqrt 5 > R\). Suy ra điểm \(B\) nằm ngoài đường tròn.

c) Có \(\overrightarrow {IA} = \left( { - 2;0} \right)\).

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(A\) đi qua \(A\left( {1; - 1} \right)\) và nhận \(\overrightarrow n = \left( { - 1;0} \right)\) làm vectơ pháp tuyến có phương trình là \( - \left( {x - 1} \right) = 0 \Leftrightarrow x = 1\).

d) Giả sử tiếp tuyến qua \(B\) nhận \(\overrightarrow n = \left( {a;b} \right)\) làm vectơ pháp tuyến có phương trình là

\(a\left( {x - 1} \right) + b\left( {y - 3} \right) = 0\)\( \Leftrightarrow ax + by - a - 3b = 0\;\left( {\rm{d}} \right)\).

\(d\left( {I,\left( d \right)} \right) = R\)\( \Leftrightarrow \frac{{\left| {a.3 + b.\left( { - 1} \right) - a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow \left| {2a - 4b} \right| = 2\sqrt {{a^2} + {b^2}} \)\( \Leftrightarrow \left| {a - 2b} \right| = \sqrt {{a^2} + {b^2}} \)

\( \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) = {a^2} + {b^2}\)\( \Leftrightarrow - 4ab + 3{b^2} = 0\)\( \Leftrightarrow b\left( {3b - 4a} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}b = 0\\a = \frac{3}{4}b\end{array} \right.\).

TH1: \(b = 0\) chọn \(a = 1\). Suy ra phương trình tiếp tuyến cần tìm là \(x - 1 = 0\).

TH2: Chọn \(b = 4 \Rightarrow a = 3\). Suy ra phương trình tiếp tuyến cần tìm là \(3x + 4y - 15 = 0\).

Câu 2

Lời giải

Đáp án đúng là: B

\({y^4} = {x^3}\) không là hàm số theo biến \(x\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP