Câu hỏi:
14/02/2025 1,266Cho hình bình hành \(ABCD\) có \(AC > BD.\) Gọi \(H,\,\,K\) lần lượt là hình chiếu vuông góc của \(C\) trên đường thẳng \(AB\) và \(AD.\) Vẽ tia \(Dx\) cắt \(AC,\,\,AB,\,\,BC\) lần lượt tại \(I,\,\,M,\,\,N.\) Gọi \(J\) là điểm đối xứng với \(D\) qua \(I.\) Chứng minh:
a) \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}.\) b)
c) \(AB \cdot AH + AD \cdot AK = A{C^2}.\) d) \(IM \cdot IN = I{D^2}.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Ta có \(ABCD\) là hình bình hành nên \(\widehat {ABC} = \widehat {ADC}\) \(\left( 1 \right)\) (tính chất hình bình hành)
Mà \(\widehat {HBC} = 180^\circ - \widehat {ABC}\) \(\left( 2 \right)\) (hai góc kề bù)
\(\widehat {KDC} = 180^\circ - \widehat {ADC}\) \(\left( 3 \right)\) (hai góc kề bù)
Từ \(\left( 1 \right)\), \(\left( 2 \right)\), \(\left( 3 \right)\) suy ra \(\widehat {HBC} = \widehat {KDC}.\)
Xét \(\Delta CHB\) và \(\Delta CKD\) có:
\(\widehat {BHC} = \widehat {DKC} = 90^\circ \) và \(\widehat {HBC} = \widehat {KDC}\)
Do đó (g.g).
Suy ra \(\frac{{CH}}{{CK}} = \frac{{CB}}{{CD}}\) (tỉ số cạnh tương ứng), hay \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}\) (tính chất tỉ lệ thức).
b) Ta có \(\widehat {ABC}\) là góc ngoài của \(\Delta BHC\) nên \(\widehat {ABC} = \widehat {BHC} + \widehat {BCH} = 90^\circ + \widehat {BCH}\)\(\left( 4 \right)\)
Vì \(ABCD\) là hình bình hành nên \(BC\,{\rm{//}}\,AD\) và \(AB = CD\) (tính chất hình bình hành)
Mà \(CK \bot AD\) nên \(CK \bot BC\) nên \(\widehat {BCK} = 90^\circ .\)
Do đó \(\widehat {KCH} = \widehat {BCK} + \widehat {BCH} = 90^\circ + \widehat {BCH}\) \(\left( 5 \right)\)
Từ \(\left( 4 \right)\) và \(\left( 5 \right)\) suy ra \(\widehat {ABC} = \widehat {KCH}.\)
Theo câu a, \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}\) mà \(AB = CD\) nên \(\frac{{CH}}{{CB}} = \frac{{CK}}{{BA}}.\)
Xét \(\Delta CHK\) và \(\Delta BCA\) có: \(\widehat {KCH} = \widehat {ABC}\) và \(\frac{{CH}}{{CB}} = \frac{{CK}}{{BA}}\)
Do đó (c.g.c).
c) Kẻ \(BE \bot AC\) tại \(E\) \(\left( {E \in AC} \right).\)
Xét \(\Delta AEB\) và \(\Delta AHC\) có: \(\widehat {AEB} = \widehat {AHC} = 90^\circ \) và \(\widehat {HAC}\) là góc chung.
Do đó (g.g).
Suy ra \(\frac{{AB}}{{AC}} = \frac{{AE}}{{AH}}\) (tỉ số cạnh tương ứng) nên \(AB \cdot AH = AC \cdot AE\)\(\left( 6 \right)\)
Xét \(\Delta BCE\) và \(\Delta CAK\) có:
\(\widehat {BEC} = \widehat {CKA} = 90^\circ \) và \(\widehat {BCE} = \widehat {CAK}\) (hai góc so le trong, \(BC\,{\rm{//}}\,DA)\)
Do đó (g.g).
Suy ra \(\frac{{BC}}{{CA}} = \frac{{CE}}{{AK}}\) (tỉ số cạnh tương ứng) nên \(BC \cdot AK = AC \cdot CE\)
Mà \(BC = AD\) nên \(AD \cdot AK = AC \cdot CE\) \(\left( 7 \right)\)
Từ \(\left( 6 \right)\) và \(\left( 7 \right)\) suy ra: \(AB \cdot AH + AD \cdot AK = AC \cdot AE + AC \cdot CE\)
Hay \(AB \cdot AH + AD \cdot AK = AC\left( {AE + CE} \right) = A{C^2}.\)
d) Do \(ABCD\) là hình bình hành nên \(AB\,{\rm{//}}\,CD;\;AD\,{\rm{//}}\,BC\) (tính chất hình bình hành)
Hay \(AM\,{\rm{//}}\,CD;\;AD\,{\rm{//}}\,NC.\)
Vì \(AD\,{\rm{//}}\,NC\) nên do đó \(\frac{{IN}}{{ID}} = \frac{{IC}}{{IA}}\) (tỉ số cạnh tương ứng) \(\left( 8 \right)\)
Vì \(AM\,{\rm{//}}\,DC\) nên do đó \(\frac{{ID}}{{IM}} = \frac{{IC}}{{IA}}\) (tỉ số cạnh tương ứng) \(\left( 9 \right)\)
Từ \(\left( 8 \right)\) và \(\left( 9 \right)\) suy ra \(\frac{{IN}}{{ID}} = \frac{{ID}}{{IM}},\) nên \(IM \cdot IN = I{D^2}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biểu thức: \[M = \frac{1}{{{x^2} - 2x}} \cdot \left( {\frac{{{x^2} + 4}}{x} - 4} \right) + 1.\]
a) Tìm điều kiện xác định của biểu thức \(M.\)
b) Tính giá trị của \(M\) biết \[\left| {4 - x} \right| = 2.\]
c) Tìm \[x\] để \(M\) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
Câu 2:
Lúc 7 giờ sáng, An đi từ nhà đến trường bằng xe đạp điện với vận tốc trung bình \(13\) km/h theo đường đi \(A \to B \to C \to D \to E\) như trong hình. Nếu có 1 con đường thẳng từ \(A\) đến \(E\) và đi theo con đường đó với vận tốc trung bình \(13\) km/h. Bạn An sẽ tới trường lúc mấy giờ (làm tròn đến phút) (hình minh họa)?
Câu 3:
Có hai loại dung dịch muối I và II. Người ta hòa 200 gam dung dịch muối I với 300 gam dung dịch muối II thì được một dung dịch có nồng độ muối là 33%. Tính nồng độ muối trong dung dịch I và II, biết rằng nồng độ muối trong dung dịch I lớn hơn nồng độ muối trong dung dịch II là 20%.
Câu 4:
Một đội máy xúc trên công trường đường Hồ Chí Minh nhận nhiệm vụ xúc \[11{\rm{ }}600\,\,{{\rm{m}}^{\rm{3}}}\] đất. Giai đoạn đầu còn nhiều khó khăn nên máy làm việc với năng suất trung bình \[x\]\[({{\rm{m}}^{\rm{3}}}\]/ngày) và đội đào được Sau đó công việc ổn định hơn năng suất của máy tăng ngày. Hãy biểu diễn qua x:
a) Thời gian xúc đầu tiên.
b) Thời gian làm nốt phần việc còn lại.
Câu 5:
Giải các phương trình sau:
a) \( - \frac{1}{2}x + 2 = \frac{5}{2}x - 1\). b) \(2x - 1 - \left( {4x - 1} \right) = x + 6\).
c) . d) \[{\left( {x - 5} \right)^2} - 13 = x\left( {x - 12} \right).\]
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận