Câu hỏi:

14/02/2025 68

Cho hình bình hành \(ABCD\) có \(AC > BD.\) Gọi \(H,\,\,K\) lần lượt là hình chiếu vuông góc của \(C\) trên đường thẳng \(AB\) và \(AD.\) Vẽ tia \(Dx\) cắt \(AC,\,\,AB,\,\,BC\) lần lượt tại \(I,\,\,M,\,\,N.\) Gọi \(J\) là điểm đối xứng với \(D\) qua \(I.\) Chứng minh:

a) \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}.\)          b) ΔCHKΔBCA.

c) \(AB \cdot AH + AD \cdot AK = A{C^2}.\)   d) \(IM \cdot IN = I{D^2}.\)

Sách mới 2k7: 30 đề đánh giá năng lực ĐHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Đề ĐGNL Hà Nội Đề ĐGNL Tp.Hồ Chí Minh Đề ĐGTD Bách Khoa HN

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD  có AC > BD Gọi H , K  lần lượt là hình chiếu vuông góc của C  trên đường thẳng  (ảnh 1)

a) Ta có \(ABCD\) là hình bình hành nên \(\widehat {ABC} = \widehat {ADC}\) \(\left( 1 \right)\) (tính chất hình bình hành)

Mà \(\widehat {HBC} = 180^\circ - \widehat {ABC}\) \(\left( 2 \right)\) (hai góc kề bù)

      \(\widehat {KDC} = 180^\circ - \widehat {ADC}\) \(\left( 3 \right)\) (hai góc kề bù)

Từ \(\left( 1 \right)\), \(\left( 2 \right)\), \(\left( 3 \right)\) suy ra \(\widehat {HBC} = \widehat {KDC}.\)

Xét \(\Delta CHB\) và \(\Delta CKD\) có:

\(\widehat {BHC} = \widehat {DKC} = 90^\circ \)\(\widehat {HBC} = \widehat {KDC}\)

Do đó  (g.g).

Suy ra \(\frac{{CH}}{{CK}} = \frac{{CB}}{{CD}}\) (tỉ số cạnh tương ứng), hay \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}\) (tính chất tỉ lệ thức).

b) Ta có \(\widehat {ABC}\) là góc ngoài của \(\Delta BHC\) nên \(\widehat {ABC} = \widehat {BHC} + \widehat {BCH} = 90^\circ + \widehat {BCH}\)\(\left( 4 \right)\)

Vì \(ABCD\) là hình bình hành nên \(BC\,{\rm{//}}\,AD\) và \(AB = CD\) (tính chất hình bình hành)

Mà \(CK \bot AD\) nên \(CK \bot BC\) nên \(\widehat {BCK} = 90^\circ .\)

Do đó \(\widehat {KCH} = \widehat {BCK} + \widehat {BCH} = 90^\circ + \widehat {BCH}\) \(\left( 5 \right)\)

Từ \(\left( 4 \right)\) và \(\left( 5 \right)\) suy ra \(\widehat {ABC} = \widehat {KCH}.\)

Theo câu a, \(\frac{{CH}}{{CB}} = \frac{{CK}}{{CD}}\) mà \(AB = CD\) nên \(\frac{{CH}}{{CB}} = \frac{{CK}}{{BA}}.\)

Xét \(\Delta CHK\) và \(\Delta BCA\) có: \(\widehat {KCH} = \widehat {ABC}\)\(\frac{{CH}}{{CB}} = \frac{{CK}}{{BA}}\)

Do đó  (c.g.c).

c) Kẻ \(BE \bot AC\) tại \(E\) \(\left( {E \in AC} \right).\)

Xét \(\Delta AEB\) và \(\Delta AHC\) có: \(\widehat {AEB} = \widehat {AHC} = 90^\circ \)\(\widehat {HAC}\) là góc chung.

Do đó  (g.g).

Suy ra \(\frac{{AB}}{{AC}} = \frac{{AE}}{{AH}}\) (tỉ số cạnh tương ứng) nên \(AB \cdot AH = AC \cdot AE\)\(\left( 6 \right)\)

Xét \(\Delta BCE\) và \(\Delta CAK\) có:

\(\widehat {BEC} = \widehat {CKA} = 90^\circ \)\(\widehat {BCE} = \widehat {CAK}\) (hai góc so le trong, \(BC\,{\rm{//}}\,DA)\)

Do đó  (g.g).

Suy ra \(\frac{{BC}}{{CA}} = \frac{{CE}}{{AK}}\) (tỉ số cạnh tương ứng) nên \(BC \cdot AK = AC \cdot CE\)

\(BC = AD\) nên \(AD \cdot AK = AC \cdot CE\) \(\left( 7 \right)\)

Từ \(\left( 6 \right)\)\(\left( 7 \right)\) suy ra: \(AB \cdot AH + AD \cdot AK = AC \cdot AE + AC \cdot CE\)

Hay \(AB \cdot AH + AD \cdot AK = AC\left( {AE + CE} \right) = A{C^2}.\)

d) Do \(ABCD\) là hình bình hành nên \(AB\,{\rm{//}}\,CD;\;AD\,{\rm{//}}\,BC\) (tính chất hình bình hành)

Hay \(AM\,{\rm{//}}\,CD;\;AD\,{\rm{//}}\,NC.\)

Vì \(AD\,{\rm{//}}\,NC\) nên  do đó \(\frac{{IN}}{{ID}} = \frac{{IC}}{{IA}}\) (tỉ số cạnh tương ứng) \(\left( 8 \right)\)

Vì \(AM\,{\rm{//}}\,DC\) nên  do đó \(\frac{{ID}}{{IM}} = \frac{{IC}}{{IA}}\) (tỉ số cạnh tương ứng) \(\left( 9 \right)\)

Từ \(\left( 8 \right)\) và \(\left( 9 \right)\) suy ra \(\frac{{IN}}{{ID}} = \frac{{ID}}{{IM}},\) nên \(IM \cdot IN = I{D^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Lúc 7 giờ sáng, An đi từ nhà đến trường bằng xe đạp điện với vận tốc trung bình \(13\) km/h theo đường đi \(A \to B \to C \to D \to E\) như trong hình. Nếu có 1 con đường thẳng từ \(A\) đến \(E\) và đi theo con đường đó với vận tốc trung bình \(13\) km/h. Bạn An sẽ tới trường lúc mấy giờ (làm tròn đến phút) (hình minh họa)?

Lúc 7 giờ sáng, An đi từ nhà đến trường bằng xe đạp điện với vận tốc trung bình \(13\) km/h (ảnh 1)

Xem đáp án » 14/02/2025 70

Câu 2:

Cho biểu thức: \[M = \frac{1}{{{x^2} - 2x}} \cdot \left( {\frac{{{x^2} + 4}}{x} - 4} \right) + 1.\]

a) Tìm điều kiện xác định của biểu thức \(M.\)

b) Tính giá trị của \(M\) biết \[\left| {4 - x} \right| = 2.\]

c) Tìm \[x\] để \(M\) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.

Xem đáp án » 14/02/2025 67

Câu 3:

Một đội máy xúc trên công trường đường Hồ Chí Minh nhận nhiệm vụ xúc \[11{\rm{ }}600\,\,{{\rm{m}}^{\rm{3}}}\] đất. Giai đoạn đầu còn nhiều khó khăn nên máy làm việc với năng suất trung bình \[x\]\[({{\rm{m}}^{\rm{3}}}\]/ngày) và đội đào được  Sau đó công việc ổn định hơn năng suất của máy tăng 25  m3/ngày. Hãy biểu diễn qua x:

a) Thời gian xúc 5  000  m3 đầu tiên.

b) Thời gian làm nốt phần việc còn lại.

Xem đáp án » 14/02/2025 29

Câu 4:

Có hai loại dung dịch muối I và II. Người ta hòa 200 gam dung dịch muối I với 300 gam dung dịch muối II thì được một dung dịch có nồng độ muối là 33%. Tính nồng độ muối trong dung dịch I và II, biết rằng nồng độ muối trong dung dịch I lớn hơn nồng độ muối trong dung dịch II là 20%.

Xem đáp án » 14/02/2025 22

Câu 5:

Giải các phương trình sau:

a) \( - \frac{1}{2}x + 2 = \frac{5}{2}x - 1\).        b) \(2x - 1 - \left( {4x - 1} \right) = x + 6\).

c) x20x1025=2.                                                          d) \[{\left( {x - 5} \right)^2} - 13 = x\left( {x - 12} \right).\]

Xem đáp án » 14/02/2025 16

Bình luận


Bình luận