Câu hỏi:
15/02/2025 4,392Cho hai đường thẳng \(\left( {{d_1}} \right):y = 2x - 1\) và \(\left( {{d_2}} \right):y = - x + 2\).
a) Chứng tỏ rằng hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) cắt nhau. Xác định tọa độ giao điểm \(I\) của chúng và vẽ hai đường thẳng này trên cùng một hệ trục tọa độ.
b) Lập phương trình đường thẳng \(\left( {{d_3}} \right)\) đi qua \(I\) và song song với đường thẳng \(y = \frac{1}{2}x + 9.\)
Quảng cáo
Trả lời:
a) Nhận thấy hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) có hệ số \(2 \ne - 1\) nên chúng cắt nhau.
Xét phương trình hoành độ giao điểm, ta có:
\(2x - 1 = - x + 2\) suy ra \(3x = 3\) nên \(x = 1\).
Thay \(x = 1\) vào đường thẳng \(\left( {{d_1}} \right)\), ta có \(y = 1.\)
Vậy ta có giao điểm \(I\left( {1;1} \right)\).
b) Gọi phương trình đường thẳng \(\left( {{d_3}} \right)\) là: \(y = ax + b\)
Theo đề, đường thẳng \(\left( {{d_3}} \right)\) song song với \(y = \frac{1}{2}x + 9\) nên có hệ số \(a = \frac{1}{2}\).
Vì \(\left( {{d_3}} \right)\) đi qua \(I\) nên ta có \(1 = \frac{1}{2}.1 + b\) suy ra \(b = \frac{1}{2}\).
Vậy \(\left( {{d_3}} \right):y = \frac{1}{2}a + \frac{1}{2}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: a) Đ b) S c) Đ d) Đ
a) Xét \(\Delta ABC\) có \(EG\parallel BM\), theo định lí Thalès ta có: \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}\).
b) Xét \(\Delta DCN\) có \(BM\parallel CN\), theo định lí Thalès ta có: \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}}\).
c) Có \(D\) là trung điểm của \(BC\) (do \(AD\) là trung tuyến của tam giác) nên \(DB = DC\).
Do đó, \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}} = 1\) nên \(DM = DN\).
Suy ra \(GM + GN = GM + GM + MN = 2GM + 2MD = 2GD\).
Lại có \(G\) là trọng tâm \(\Delta ABC\) nên \(AG = 2GD\).
Xét \(\Delta ACN\) có \(FG\parallel CN\), theo định lí Thalès ta có: \(\frac{{CF}}{{AF}} = \frac{{GN}}{{AG}}\).
Suy ra \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = \frac{{MG}}{{AG}} + \frac{{GN}}{{AG}} = \frac{{GM + GN}}{{AG}} = \frac{{2GD}}{{2GD}} = 1\).
Do đó, \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1\).
d) Xét \(\Delta ABC\) có \(EG\parallel BM\), theo định lí Thalès ta có: \(\frac{{AB}}{{AE}} = \frac{{AM}}{{AG}}\).
Xét \(\Delta ACN\) có \(FG\parallel CN\), theo định lí Thalès ta có: \(\frac{{AC}}{{AF}} = \frac{{AN}}{{AG}}\).
Suy ra \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = \frac{{AM}}{{AG}} + \frac{{AN}}{{AG}} = \frac{{AM + AN}}{{AG}} = \frac{{AG + GM + AG + GM + MN}}{{AG}}\)
\( = \frac{{2AG + 2GM + 2MD}}{{AG}} = \frac{{2AG + 2\left( {GM + MD} \right)}}{{AG}} = \frac{{2AG + 2GD}}{{AG}} = \frac{{2AG + 2.\frac{1}{2}AG}}{{AG}} = \frac{{3AG}}{{AG}} = 3\).
Vậy \(\frac{{AB}}{{AE}} + \frac{{CA}}{{AF}} = 3\).
Lời giải
Đáp án đúng là: C
Nhận thấy ở Hình 3, xét tam giác \(ABC\), có:
\(M\) là trung điểm của \(AB\) và \(N\) là trung điểm của \(AC\).
Do đó, \(MN\) là đường trung bình của tam giác \(ABC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận