Câu hỏi:

16/02/2025 48

Cho tam giác \[ABC,\] các đường trung tuyến \[BD,{\rm{ }}CE.\] Gọi \[M,{\rm{ }}N\] theo thứ tự là trung điểm của \[BE,{\rm{ }}CD.\] Gọi \[I,{\rm{ }}K\] theo thứ tự là giao điểm của \[MN\] với \[BD\]\[CE.\] Chứng minh rằng:

a) \[ED\,{\rm{//}}\,BC.\]         b) \[MN\,{\rm{//}}\,BC.\]    c) \[MI = IK = KN.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Trong \(\Delta ABC\)các đường trung tuyến \[BD,{\rm{ }}CE\] nên \[D\] là trung điểm của \[AC,\] \[E\] là trung điểm của \[AB\] nên \[ED\] là đường trung bình của \(\Delta ABC.\)

Suy ra \(ED = \frac{1}{2}BC\)\[ED\,{\rm{//}}\,BC\] (tính chất đường trung bình của tam giác).

Cho tam giác ABC , các đường trung tuyến BD, CE . Gọi M, N theo thứ tự là trung điểm của BE , CD (ảnh 1)

b) Ta có: \[E\] là trung điểm của \[AB\] nên \(AE = EB = \frac{1}{2}AB.\)

\[M\] là trung điểm của \[EB\] nên \(EM = MB = \frac{1}{2}EB = \frac{1}{4}AB\) hay \(\frac{{MB}}{{AB}} = \frac{1}{4}.\)

Tương tự, ta cũng có \(NC = \frac{1}{4}AC\) hay \(\frac{{NC}}{{AC}} = \frac{1}{4}.\)

Suy ra \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\,\,\left( { = \frac{1}{4}} \right).\)

Xét \(\Delta ABC\)\(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\) nên \[MN\,{\rm{//}}\,BC\] (định lí Thalès đảo).

c) Ta có \[MN\,{\rm{//}}\,BC\] (câu b) và \[ED\,{\rm{//}}\,BC\] (câu a) nên \[ED\,{\rm{//}}\,MN\,{\rm{//}}\,BC.\]

Xét \(\Delta BDE\)\[M\] là trung điểm của \[EB\]\[MI\,{\rm{//}}\,ED\] (do \[ED\,{\rm{//}}\,MN)\]

Suy ra \[I\] là trung điểm của \[BD\] hay \[IB = ID.\]

Khi đó \[MI\] là đường trung bình của \(\Delta BDE\) nên \(MI = \frac{1}{2}ED.\)

Tương tự, trong DCDE ta cũng có \(KN = \frac{1}{2}ED,\) trong DBCE có \(MK = \frac{1}{2}BC.\)

Ta có \(IK = MK - MI = \frac{1}{2}BC - \frac{1}{2}ED = ED - \frac{1}{2}ED = \frac{1}{2}ED\).

Do đó \(MI = IK = KN = \frac{1}{2}ED\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I là:

\[y = 32\,\,000x.\]

Khi đó \[y\] là hàm số của \[x\], vì với mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].

b) Số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là:

32000 . 8 = 256 000 (đồng).

Vậy số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là 256 000 đồng.

Lời giải

a) Để hàm số đã cho là hàm số bậc nhất thì \(3 - m \ne 0,\) hay \(m \ne 3.\)

b) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] đi qua điểm \[\left( {1;3} \right)\] thì \(x = 1\)\(y = 3\) thỏa mãn hàm số trên.

Do đó ta có: \[3 = \left( {3--m} \right) \cdot 1 + 3m + 2\]

\[3 = 3--m + 3m + 2\]

\[2m = - 2\]

\(m = - 1.\)

Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.

c) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] cắt đường thẳng \[y = x--1\] thì \(3 - m \ne 1,\) do đó \(m \ne 2.\)

Gọi \(A\left( {{x_A};{y_A}} \right)\) là giao điểm của hai đường thẳng.

Để hai đường thẳng trên cắt nhau tại điểm \(A\left( {{x_A};{y_A}} \right)\) nằm trên trục tung thì \({x_A} = 0.\)

Thay \({x_A} = 0\) vào hàm số \[y = x--1\] ta được \({y_A} = 0 - 1 = - 1.\)

Thay \({x_A} = 0\)\({y_A} = - 1\) vào hàm số \[y = \left( {3--m} \right)x + 3m + 2\] ta được:

\[ - 1 = \left( {3--m} \right) \cdot 0 + 3m + 2\]

\[ - 1 = 3m + 2\]

\[m = - 1\] (thỏa mãn \(m \ne 2).\)

Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay