Câu hỏi:

16/02/2025 273

Cho hàm số \[y = \left( {3--m} \right)x + 3m + 2.\] Tìm các giá trị của \[m\] để

a) hàm số đã cho là hàm số bậc nhất.

b) đồ thị hàm số đã cho là đường thẳng đi qua điểm \[\left( {1;{\rm{ }}3} \right).\]

c) đồ thị hàm số đã cho là đường thẳng cắt đường thẳng \[y = x--1\] tại một điểm nằm trên trục tung.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Để hàm số đã cho là hàm số bậc nhất thì \(3 - m \ne 0,\) hay \(m \ne 3.\)

b) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] đi qua điểm \[\left( {1;3} \right)\] thì \(x = 1\)\(y = 3\) thỏa mãn hàm số trên.

Do đó ta có: \[3 = \left( {3--m} \right) \cdot 1 + 3m + 2\]

\[3 = 3--m + 3m + 2\]

\[2m = - 2\]

\(m = - 1.\)

Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.

c) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] cắt đường thẳng \[y = x--1\] thì \(3 - m \ne 1,\) do đó \(m \ne 2.\)

Gọi \(A\left( {{x_A};{y_A}} \right)\) là giao điểm của hai đường thẳng.

Để hai đường thẳng trên cắt nhau tại điểm \(A\left( {{x_A};{y_A}} \right)\) nằm trên trục tung thì \({x_A} = 0.\)

Thay \({x_A} = 0\) vào hàm số \[y = x--1\] ta được \({y_A} = 0 - 1 = - 1.\)

Thay \({x_A} = 0\)\({y_A} = - 1\) vào hàm số \[y = \left( {3--m} \right)x + 3m + 2\] ta được:

\[ - 1 = \left( {3--m} \right) \cdot 0 + 3m + 2\]

\[ - 1 = 3m + 2\]

\[m = - 1\] (thỏa mãn \(m \ne 2).\)

Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I là:

\[y = 32\,\,000x.\]

Khi đó \[y\] là hàm số của \[x\], vì với mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].

b) Số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là:

32000 . 8 = 256 000 (đồng).

Vậy số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là 256 000 đồng.

Lời giải

Hướng dẫn giải

Ta có: \[\widehat {ACD} = \widehat {ABE}\] mà hai góc ở vị trí đồng vị nên \[CD{\rm{ // }}BE.\]

Ta có \(AC = AB + BC = 200 + 400 = 600\,\,{\rm{(m)}}\).

Theo hệ quả định lí Thalès, ta có: \[\frac{{CD}}{{BE}} = \frac{{AC}}{{AB}}\].

Hay \[\frac{{CD}}{{120}} = \frac{{600}}{{200}}\] suy ra \[CD = \frac{{600 \cdot 120}}{{200}} = 360\,\,({\rm{m)}}\].

Vậy khoảng cách từ con tàu đến trạm quan trắc là 360 m.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay