Câu hỏi:
16/02/2025 273Cho hàm số \[y = \left( {3--m} \right)x + 3m + 2.\] Tìm các giá trị của \[m\] để
a) hàm số đã cho là hàm số bậc nhất.
b) đồ thị hàm số đã cho là đường thẳng đi qua điểm \[\left( {1;{\rm{ }}3} \right).\]
c) đồ thị hàm số đã cho là đường thẳng cắt đường thẳng \[y = x--1\] tại một điểm nằm trên trục tung.
Quảng cáo
Trả lời:
a) Để hàm số đã cho là hàm số bậc nhất thì \(3 - m \ne 0,\) hay \(m \ne 3.\)
b) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] đi qua điểm \[\left( {1;3} \right)\] thì \(x = 1\) và \(y = 3\) thỏa mãn hàm số trên.
Do đó ta có: \[3 = \left( {3--m} \right) \cdot 1 + 3m + 2\]
\[3 = 3--m + 3m + 2\]
\[2m = - 2\]
\(m = - 1.\)
Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.
c) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] cắt đường thẳng \[y = x--1\] thì \(3 - m \ne 1,\) do đó \(m \ne 2.\)
Gọi \(A\left( {{x_A};{y_A}} \right)\) là giao điểm của hai đường thẳng.
Để hai đường thẳng trên cắt nhau tại điểm \(A\left( {{x_A};{y_A}} \right)\) nằm trên trục tung thì \({x_A} = 0.\)
Thay \({x_A} = 0\) vào hàm số \[y = x--1\] ta được \({y_A} = 0 - 1 = - 1.\)
Thay \({x_A} = 0\) và \({y_A} = - 1\) vào hàm số \[y = \left( {3--m} \right)x + 3m + 2\] ta được:
\[ - 1 = \left( {3--m} \right) \cdot 0 + 3m + 2\]
\[ - 1 = 3m + 2\]
\[m = - 1\] (thỏa mãn \(m \ne 2).\)
Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I là:
\[y = 32\,\,000x.\]
Khi đó \[y\] là hàm số của \[x\], vì với mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].
b) Số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là:
32000 . 8 = 256 000 (đồng).
Vậy số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là 256 000 đồng.
Lời giải
Hướng dẫn giải
Ta có: \[\widehat {ACD} = \widehat {ABE}\] mà hai góc ở vị trí đồng vị nên \[CD{\rm{ // }}BE.\]
Ta có \(AC = AB + BC = 200 + 400 = 600\,\,{\rm{(m)}}\).
Theo hệ quả định lí Thalès, ta có: \[\frac{{CD}}{{BE}} = \frac{{AC}}{{AB}}\].
Hay \[\frac{{CD}}{{120}} = \frac{{600}}{{200}}\] suy ra \[CD = \frac{{600 \cdot 120}}{{200}} = 360\,\,({\rm{m)}}\].
Vậy khoảng cách từ con tàu đến trạm quan trắc là 360 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận