Một hãng máy bay có giá vé đi từ Thành phố Hồ Chí Minh ra Phú Yên là \[1200{\rm{ }}000\]đồng/ người. Trong đó quy định mỗi khách hàng chỉ được mang lên sân bay tối đa 7 kg hành lý. Nếu vượt quá 7 kg hành lý trở đi bắt đầu từ 7 kg trở đi cứ mỗi kg phải trả thêm \[100\,\,000\] đồng cho tiền phạt hành lý. Gọi \[y\] (đồng) là số tiền mỗi người cần trả khi đặt vé đi máy bay từ Thành phố Hồ Chí Minh ra Phú Yên, \[x{\rm{ }}\left( {{\rm{kg}}} \right)\] là khối lượng hành lý người đó mang theo.

a) Viết công thức \[y\] theo \[x\]. Cho biết y có phải là hàm số của x không? Vì sao?
b) Một người đặt vé đi máy bay từ Thành phố Hồ Chí Minh ra Phú Yên và mang theo 9 kg hành lý. Hỏi người đó phải trả tổng cộng bao nhiêu tiền?
Quảng cáo
Trả lời:
a) Công thức \[y\] theo \[x\] là \[y = 1200\,\,000 + \left( {x--7{\rm{ }}} \right) \cdot 100\,\,000\] (đồng)
Khi đó, \[y\] là hàm số của \[x\]. Vì mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].
b) Tổng số tiền người đó phải trả là:
\[1200\,\,000 + \left( {9--7{\rm{ }}} \right) \cdot 100\,\,000 = 1400\,\,000\] (đồng).
Vậy người đó phải trả tổng cộng \[1400\,\,000\] đồng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Vì \(ABCD\) là hình thang có hai đáy \(AB\) và \(CD\) nên \(AB\,{\rm{//}}\,CD.\) Vì \(AB\,{\rm{//}}\,DM\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả định lí Thalès ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}}.\) \(\left( 1 \right)\) Vì \(AB\,{\rm{//}}\,MC\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả |
![]() |
định lí Thalès ta có \(\frac{{BF}}{{FM}} = \frac{{AB}}{{MC}}.\) \(\left( 2 \right)\)
Lại có \(M\) là trung điểm của \(CD\) nên \(DM = MC.\) \(\left( 3 \right)\)
Từ \(\left( 1 \right),\) \(\left( 2 \right)\) và \(\left( 3 \right)\) ta có \(\frac{{AE}}{{EM}} = \frac{{BF}}{{FM}},\) theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,AB.\)
b) Xét \(\Delta ADM\) có \(HE\,{\rm{//}}\,DM,\) theo hệ quả định lí Thalès ta có \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}.\)
Xét \(\Delta AMC\) có \(EF\,{\rm{//}}\,MC,\) theo hệ quả định lí Thalès ta có \[\frac{{EF}}{{MC}} = \frac{{AE}}{{AM}}.\]
Do đó \(\frac{{HE}}{{DM}} = \frac{{EF}}{{MC}},\) mà \(DM = MC\) nên \(HE = EF.\)
Chứng minh tương tự ta cũng có \(EF = FN.\) Suy ra \(HE = EF = FN.\)
c) Vì \(M\) là trung điểm của \(CD\) nên \(DM = MC = \frac{1}{2}CD = \frac{1}{2} \cdot 12 = 6{\rm{\;}}\left( {{\rm{cm}}} \right).\)
Theo câu a, ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}} = \frac{{7,5}}{6} = \frac{5}{4}.\) Suy ra \(\frac{{AE}}{5} = \frac{{EM}}{4}.\)
Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AE}}{5} = \frac{{EM}}{4} = \frac{{AE + EM}}{{5 + 4}} = \frac{{AM}}{9}.\)
Do đó \(\frac{{AE}}{{AM}} = \frac{5}{9}.\)
Mà theo câu b, \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}} = \frac{5}{9}.\)
Suy ra \(HE = \frac{5}{9}DM = \frac{5}{9} \cdot 6 = \frac{{10}}{3}{\rm{\;}}\left( {{\rm{cm}}} \right).\)
Vậy \(HN = 3HE = 3 \cdot \frac{{10}}{3} = 10{\rm{\;}}\left( {{\rm{cm}}} \right).\)
Lời giải
Hướng dẫn giải

Đặt các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D,{\rm{ }}E,{\rm{ }}M,{\rm{ }}N,{\rm{ }}P\] như hình vẽ trên.
⦁ Xét \(\Delta AMC\) có \(E,\,\,P\) lần lượt là trung điểm của \(AC,\,\,MC\) (do \(EA = EC,PM = PC)\) nên \(EP\) là đường trung bình của \(\Delta AMC.\)
Do đó \(EP = \frac{1}{2}AM = \frac{1}{2} \cdot 2,7 = 1,35{\rm{\;}}\left( {\rm{m}} \right)\) (tính chất đường trung bình của tam giác).
Hay \(x = 1,35{\rm{\;}}\left( {\rm{m}} \right){\rm{.}}\)
⦁ Ta có \(MB = MN + NB\) và \(MC = MP + PC\)
Mà \(MN = NB = MP = PC\) nên \(MB = MC.\)
Xét \(\Delta ABC\) có \(D,\,\,M\) lần lượt là trung điểm của \(AB,\,\,BC\) (do \(DB = DA,MB = MC)\) nên \(DM\) là đường trung bình của \(\Delta ABC.\)
Do đó \[DM = \frac{1}{2}AC\] (tính chất đường trung bình của tam giác).
Suy ra \(AC = 2DM = 2 \cdot 2,8 = 5,6{\rm{\;}}\left( {\rm{m}} \right).\) Hay \[y = 5,6{\rm{\;}}\left( {\rm{m}} \right).\]
Vậy độ dài của cây chống đứng bên và độ dài của của cánh kèo lần lượt là \(x = 1,35{\rm{\;}}\left( {\rm{m}} \right);\) \(y = 5,6{\rm{\;}}\left( {\rm{m}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

