Câu hỏi:

16/02/2025 167 Lưu

Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng 500 nghìn đồng một giờ.

a) Viết công thức của hàm số biểu thị tổng chi phí \[y\] (nghìn đồng) để thuê một chiếc thuyền du lịch trong \[x\] (giờ).

b) Vẽ đồ thị của hàm số thu được ở câu a để tìm tổng chi phí cho một lần thuê trong 3 giờ. Giao điểm của đồ thị với trục tung biểu thị điều gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 1 triệu đồng \[ = 1{\rm{ }}000\] nghìn đồng.

Hàm số biểu thị tổng chi phí \[y\] (nghìn đồng) để thuê một chiếc thuyền du lịch trong \[x\] (giờ) là: \[y = 1{\rm{ }}000 + 500x\] (nghìn đồng).

b) Đồ thị hàm số \[y = 1{\rm{ }}000 + 500x\] đi qua hai điểm \[\left( {--2;0} \right)\]\[\left( {0;1{\rm{ }}000} \right)\] nên đồ thị hàm số được vẽ như hình bên.

Tổng chi phí cho một lần thuê trong \[x = 3\] giờ tương ứng với điểm \[y = 2{\rm{ }}500\] nghìn đồng = 2 triệu 500 nghìn đồng.

Giao điểm của đồ thị với trục tung là điểm \[\left( {0;{\rm{ }}1{\rm{ }}000} \right).\] Giao điểm này biểu thị chi phí cố định khi thuê thuyền, dù không sử dụng giờ nào (tức là \[x = 0)\] vẫn phải trả phí 1 triệu đồng này, nếu đặt thuê.

Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng 500 nghìn đồng một giờ. (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì \(ABCD\) là hình thang có hai đáy \(AB\)\(CD\) nên \(AB\,{\rm{//}}\,CD.\)

\(AB\,{\rm{//}}\,DM\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả định lí Thalès ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}}.\) \(\left( 1 \right)\)

\(AB\,{\rm{//}}\,MC\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả

Cho hình thang \(ABCD\) có hai đáy \(AB\) và \(CD.\) Gọi \(M\) là trung điểm của \(CD,\) \(E\) là giao điểm của (ảnh 1)

định lí Thalès ta có \(\frac{{BF}}{{FM}} = \frac{{AB}}{{MC}}.\) \(\left( 2 \right)\)

Lại có \(M\) là trung điểm của \(CD\) nên \(DM = MC.\) \(\left( 3 \right)\)

Từ \(\left( 1 \right),\) \(\left( 2 \right)\)\(\left( 3 \right)\) ta có \(\frac{{AE}}{{EM}} = \frac{{BF}}{{FM}},\) theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,AB.\)

b) Xét \(\Delta ADM\)\(HE\,{\rm{//}}\,DM,\) theo hệ quả định lí Thalès ta có \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}.\)

Xét \(\Delta AMC\)\(EF\,{\rm{//}}\,MC,\) theo hệ quả định lí Thalès ta có \[\frac{{EF}}{{MC}} = \frac{{AE}}{{AM}}.\]

Do đó \(\frac{{HE}}{{DM}} = \frac{{EF}}{{MC}},\)\(DM = MC\) nên \(HE = EF.\)

Chứng minh tương tự ta cũng có \(EF = FN.\) Suy ra \(HE = EF = FN.\)

c) Vì \(M\) là trung điểm của \(CD\) nên \(DM = MC = \frac{1}{2}CD = \frac{1}{2} \cdot 12 = 6{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Theo câu a, ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}} = \frac{{7,5}}{6} = \frac{5}{4}.\) Suy ra \(\frac{{AE}}{5} = \frac{{EM}}{4}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AE}}{5} = \frac{{EM}}{4} = \frac{{AE + EM}}{{5 + 4}} = \frac{{AM}}{9}.\)

Do đó \(\frac{{AE}}{{AM}} = \frac{5}{9}.\)

Mà theo câu b, \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}} = \frac{5}{9}.\)

Suy ra \(HE = \frac{5}{9}DM = \frac{5}{9} \cdot 6 = \frac{{10}}{3}{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Vậy \(HN = 3HE = 3 \cdot \frac{{10}}{3} = 10{\rm{\;}}\left( {{\rm{cm}}} \right).\)