Câu hỏi:
03/03/2025 121Cho đường tròn \(\left( {O;\,\,R} \right)\). Từ \(A\) trên \(\left( O \right),\) kẻ tiếp tuyến \(d\) với \(\left( O \right).\) Trên đường thẳng \(d\) lấy điểm \(M\) bất kỳ \(\left( M \right.\) khác \(\left. A \right),\) kẻ cát tuyến \(MNP.\) Gọi \(K\) là trung điểm của \(NP,\) kẻ tiếp tuyến \(MB\). Kẻ \[AC \bot MB,\,\,BD \bot AM\,\,\left( {C \in MB,\,\,D \in AM} \right).\] Gọi\[H\] là giao điểm của \[AC\] và \[BD,\] \[I\] là giao điểm của \[OM\] và \[AB.\]
a) Chứng minh tứ giác \(AMBO\) nội tiếp.
b) Chứng minh \(OI \cdot OM = {R^2}\) và \(OI \cdot IM = I{A^2}\).
c) Chứng minh ba điểm \(O,\,\,H,\,\,M\) thẳng hàng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có \(\widehat {OAM} = 90^\circ \) (do \[MA\] là tiếp tuyến của \[\left( O \right)\], \[A\] là tiếp điểm).
Suy ra ba điểm \(O,\,\,A,\,\,M\) cùng thuộc một đường tròn đường kính \[OM. & \left( 1 \right)\]
Lại có \(\widehat {OBM} = 90^\circ \) (do \[MB\] là tiếp tuyến của \[\left( O \right)\], \[B\] là tiếp điểm).
Suy ra ba điểm \(O,\,\,B,\,\,M\) cùng thuộc một đường tròn đường kính \[OM. & \left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
b) Ta có tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]
Suy ra \[AB\] là dây cung của đường tròn đường kính \[OM.\]
Do đó \(OM \bot AB\).
Xét \(\Delta OAM\) vuông tại \[A\] có \[AI\] là đường cao.
Xét \(\Delta OAM\) và \[\Delta OIA\] là hai tam giác vuông có góc \[\widehat O\] chung nên
Suy ra \[\frac{{OA}}{{OI}} = \frac{{OM}}{{OA}}\] hay \[O{A^2} = OM.OI\] mà \[OA = R\] nên \(OI \cdot OM = {R^2}\).
Áp dụng định lí Pythagore trong tam giác vuông \[IOA\], ta có
\[I{A^2} = O{A^2} - O{I^2} = OI \cdot OM - O{I^2} = OI\left( {OM - OI} \right) = OI.IM\].
Ta có \(OA \bot AM\) (do \[AM\] là tiếp tuyến của \(\left( O \right)\) và \(BD \bot MA\) (gt), suy ra \[OA\,{\rm{//}}\,BD\].
Chứng minh tương tự, ta được \[OB\,{\rm{//}}\,{\rm{A}}C\].
Do đó tứ giác \[OAHB\] là hình bình hành.
Mà \(OA = OB = R\) nên tứ giác \[OAHB\] là hình thoi, suy ra \(OH \bot AB\).
Mà \(OM \bot AB\), do đó \[OM \equiv OH\].
Vậy ba điểm \[O,\,\,H,M\] thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cái ly thủy tinh (như hình vẽ), phần phía trên là hình nón có chiều cao \[7\,{\rm{cm,}}\] có đáy đường tròn bán kính \[4\,\,{\rm{cm}}{\rm{.}}\] Biết trong ly đang chứa rượu với mức rượu đang cách miệng ly là \[3\,\,{\rm{cm}}.\]
a) Thể tích hình nón có bán kính đáy \(R\) và chiều cao \(h\), được tính bằng công thức: \(V = \pi {R^2}h.\)
b) Chiều cao của phần rượu có trong ly là \[4\,\,{\rm{cm}}.\]
c) Thể tích của cái ly thủy tinh là \[\frac{{28}}{3}\pi \,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}{\rm{.}}\]
d) Tỉ số giữa thể tích của phần còn lại trong ly rượu so với thể tích ly là \[\frac{4}{7}\].
Câu 2:
Để chở 15 tấn thiết bị phục vụ Lễ kỷ niệm 70 năm chiến thắng Điện Biên Phủ, một đội vận chuyển dự định sử dụng các xe tải loại nhỏ. Do thay đổi kế hoạch, đội vận chuyển quyết định chỉ sử dụng các xe tải loại lớn. Vì vậy, số xe sử dụng giảm đi hai xe so với dự định và mỗi xe tải loại lớn chở nhiều hơn mỗi xe tải loại nhỏ là 2 tấn. Biết mỗi xe tải cùng loại đều chở số tấn thiết bị bằng nhau. Hỏi đội vận chuyển sử dụng bao nhiêu xe tải loại lớn?
Câu 3:
Một hộp chứa 4 tấm thẻ cùng loại được đánh số 1;4;7;9 Bạn Khuê và bạn Hương lần lượt mỗi người lấy ra 1 tấm thẻ từ hộp. Tính xác suất của biến cố \(A:\) “Số ghi trên tấm thẻ của bạn Khuê nhỏ hơn số ghi trên tấm thẻ của bạn Hương” (viết kết quả dưới dạng số thập phân).
Câu 4:
B. Tự luận
1. Kết quả nhảy xa của một lớp (đơn vị mét) được cho trong bảng sau:
2,4 |
3,1 |
2,7 |
2,8 |
3,2 |
2,8 |
4,1 |
3,2 |
2,1 |
3,2 |
2,1 |
3,2 |
2,3 |
2,5 |
2,6 |
3,3 |
3,6 |
2,0 |
2,0 |
2,7 |
3,1 |
2,3 |
4,3 |
3,9 |
3,9 |
3,5 |
3,6 |
3,7 |
2,7 |
3,5 |
3,5 |
2,4 |
a) Để thu gọn bảng dữ liệu trên thì nên chọn bảng tần số ghép nhóm hay tấn số không ghép nhóm? Vì sao?
b) Hãy lập bảng số liệu làm 5 nhóm trong đó nhóm cuối cùng cự li là từ 4,0 đến dưới 4,5 m. Lập bảng tần số và tần số tương đối ghép nhóm.
2. Cho hai túi I và II mỗi túi chứa 3 tấm thẻ được đánh số \[2\,;\,\,3\,;\,\,4.\] Rút ngẫu nhiên từ mỗi túi ra 1 tấm thẻ và ghép thành số có hai chữ số với chữ số trên tấm thẻ rút từ túi I là chữ số hàng chục. Tính xác suất của biến cố “Số tạo thành là số chia hết cho 3”.
Câu 5:
A. Trắc nghiệm
Giá trị của \[m\] để hàm số \[y = \left( {2 - m} \right){x^2}\,\,\left( {m \ne 2} \right)\] nghịch biến với mọi giá trị của \[x > 0\] là
Câu 6:
Cho bảng tần số ghép nhóm:
Nhóm |
\[\left[ {7\,;\,\,13} \right)\] |
\[\left[ {13\,;\,\,19} \right)\] |
\[\left[ {19\,;\,\,25} \right)\] |
\[\left[ {25\,;\,\,31} \right)\] |
\[\]Tần số |
\(5\) |
\[10\] |
\[20\] |
\[15\] |
Mệnh đề sai là mệnh đề
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận