Câu hỏi:

03/03/2025 1,567

Cho hình bên là một thúng gạo vun đầy. Thúng có dạng nửa hình cầu với đường kính \[50\,\,{\rm{cm,}}\] phần gạo vun lên có dạng hình nón cao \[15\,\,{\rm{cm}}{\rm{.}}\]

Cho hình bên là một thúng gạo vun đầy. Thúng có dạng nửa hình cầu với đường kính   50 c m ,   phần gạo vun lên có dạng hình nón cao   15 c m . (ảnh 1)Cho hình bên là một thúng gạo vun đầy. Thúng có dạng nửa hình cầu với đường kính   50 c m ,   phần gạo vun lên có dạng hình nón cao   15 c m . (ảnh 2)

Nhà Danh dùng lon sữa bò cũ có dạng hình trụ (bán kính đáy bằng \[5\,\,{\rm{cm}},\] chiều cao \[15\,\,{\rm{cm}})\] để đong gạo mỗi ngày. Biết mỗi ngày nhà Danh ăn 5 lon gạo và mỗi lần đong thì lượng gạo chiếm \[90\% \] thể tích lon.

a) Thể tích hình cầu có bán kính đáy \(R\), được tính bằng công thức: \(V = \frac{4}{3}\pi {R^3}.\)

b) Phần gạo nằm ngang mặt thúng trở xuống có dạng nửa hình cầu có bán kính \[50\,\,{\rm{cm}}\].

c) Thể tích phần gạo trong thúng là \(\frac{{60\,\,625}}{3}\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)

d) Với lượng gạo ở thúng trên thì nhà Danh có thể ăn nhiều nhất là 15 ngày.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: a) Đúng.b) Sai.c) Đúng.d) Sai.

⦁ Thể tích hình cầu có bán kính đáy \(R\), được tính bằng công thức: \(V = \frac{4}{3}\pi {R^3}.\)

Do đó ý a) là đúng.

⦁ Phần gạo nằm ngang mặt thúng trở xuống có dạng nửa hình cầu có bán kính \[\frac{{50}}{2} = 25\,\,\left( {{\rm{cm}}} \right).\] Do đó ý b) là sai.

⦁ Phần gạo nằm ngang mặt thúng trở xuống có dạng nửa hình cầu có bán kính \(25\,\,{\rm{cm}}\) có thể tích là \({V_1} = \frac{1}{2} \cdot \frac{4}{3}\pi \cdot {25^3} = \frac{{31\,\,250}}{3}\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Phần gạo nằm trên miệng thúng có dạng hình nón có chiều cao \(15cm\) và bán kính đáy \(\frac{{50}}{2} = 25\,\,\left( {{\rm{cm}}} \right)\) có thể tích là \({V_2} = \frac{1}{3} \cdot 15 \cdot \pi \cdot {25^2} = 3\,\,125\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Khi đó thể tích gạo trong thúng là \(V = {V_1} + {V_2} = \frac{{31\,\,250}}{3}\pi + 3\,\,125\pi = \frac{{60\,\,625}}{3}\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Do đó ý c) là đúng.

⦁ Thể tích lon là \(V = \pi \cdot {5^2} \cdot 15 = 375\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Vì lượng gạo chiếm \[90\% \] thể tích lon nên thể tích gạo trong mỗi lần lấy là:

\(375\pi \cdot 90\% = 337,5\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)

Khi đó mỗi ngày nhà Danh ăn hết số gạo có thể tích là: \(337,5\pi \cdot 5 = 1687,5\pi \,\,\left( {c{m^3}} \right).\)

Vậy với số gạo ở thúng trên thì nhà Danh ăn được số ngày là: \(\frac{{\frac{{60\,\,625}}{3}\pi }}{{1687,5\pi }} \approx 12\) (ngày).

Do đó ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 30.

Gọi vận tốc của xe tải là \(x\,\,({\rm{km/h}})\,\,\,\left( {x > 0} \right).\)

Khi đó, vận tốc của xe khách là \(x\, + \,10\,\,({\rm{km/h}}).\)

Thời gian đi hết quãng đường của xe tải là \(\frac{{132}}{x}\) (giờ) và của xe khách là \(\frac{{132}}{{x + 10}}\) (giờ).

Đổi 1 giờ 6 phút \( = \,\frac{{11}}{{10}}\) giờ.

Vì xe khách đi nhanh hơn xe tải 1 giờ 6 phút nên ta có phương trình:

\(\frac{{132}}{x} - \frac{{132}}{{x + 10}} = \frac{{11}}{{10}}\)

\(\frac{{12}}{x} - \frac{{12}}{{x + 10}} = \frac{1}{{10}}\)

\(120\left( {x + 10} \right) - 120x = x\left( {x + 10} \right)\)

\(120x + 1200 - 120x = {x^2} + 10x\)

\[{x^2} + 10x - 1200 = 0\]

\(x = 30\) (TMĐK) hoặc \[{\rm{\;}}x = - 40\] (loại).

Vậy vận tốc của xe tải là \(30\,\,{\rm{km/h}}{\rm{.}}\)

Lời giải

Hướng dẫn giải

Cho tam giác   A B C   nhọn có   A B < A C   nội tiếp đường tròn   ( O ; R )  . Các đường cao   B E ; C F   của tam giác cắt nhau tại   H     ( E   thuộc   A C , F  thuộc   A B ) .    a) Chứng minh: Tứ giác   B F E C   nội tiếp đường tròn.  b) Kẻ đường kính   A K   của đường tròn   ( O )  . Chứng minh   A K   vuông góc với   E F  . (ảnh 1)

a) Ta có \[BE,\,\,CF\] là hai đường cao của tam giác \[ABC\] nên \[\widehat {BFC} = \widehat {BEC} = 90^\circ .\]

Tam giác \[BCE\] vuông tại \[E\] nên \[B,\,\,C,\,\,E\] thuộc đường tròn đường kính \[BC.\]

Tam giác \[BFC\] vuông tại \[F\] nên \[B,\,\,C,\,\,F\] thuộc đường tròn đường kính \[BC.\]

Do đó \[B,\,\,C,\,\,E,\,\,F\] thuộc đường tròn đường kính \[BC.\]

Hay tứ giác \[BFEC\] là tứ giác nội tiếp.

b) Vì tứ giác \[BFEC\] nội tiếp nên \[\widehat {AEF} = \widehat {ABC}\], mà \[\widehat {AKC} = \widehat {ABC}\] nên \[\widehat {AKC} = \widehat {AEF}.\]

Xét đường tròn \[\left( O \right)\] có \(\widehat {ACK} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) nên

\[\widehat {AKC} + \widehat {IAE} = 90^\circ \] hay \[\widehat {AEF} + \widehat {IAE} = 90^\circ .\]

Tam giác \[IAE\] vuông tại \[I\] nên \[AK \bot EF\] (đpcm).

c) Gọi \[M\] là giao điểm của \[BC\] và \[HK.\]

Vì \(\widehat {ABK},\,\,\widehat {ACK}\) đều là các góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \[\widehat {ABK} = 90^\circ ,\,\,\widehat {ACK} = 90^\circ \] hay \(AB \bot BK\,;\,\,AC \bot CK.\)

Vì \(AB \bot BK\) và \(AB \bot CF\) nên \[BK\,{\rm{//}}\,CF\] hay \[BK\,{\rm{//}}\,CH.\]

Vì \(AC \bot CK\) và \(AC \bot BE\) nên \[BE\,{\rm{//}}\,CK\] hay \[BH\,{\rm{//}}\,CK.\]

Xét tứ giác \(BHCK\) có \[BK\,{\rm{//}}\,CH\,;\,\,BH\,{\rm{//}}\,CK\] nên tứ giác \(BHCK\) là hình bình hành.

Suy ra hai đường chéo \(BC\) và \[HK\]cắt nhau tại trung điểm \[M\] của mỗi đường.

Xét tam giác \[AHK\] có \(O,\,\,M\) lần lượt là trung điểm của \(AK,\,\,HK\)

Suy ra \[OM\] là đường trung bình tam giác \[AHK\] nên \[AH = 2OM;\,\,OM\,{\rm{//}}\,AH.\]

Vì \[\Delta AEH\] vuông tại \[E\] nên \({S_{AEH}} = \frac{1}{2}AE \cdot EH \le \frac{1}{2} \cdot \frac{{A{E^2} + E{H^2}}}{2} = \frac{{A{H^2}}}{4} = O{M^2}. & \left( 1 \right)\)

Vì \[M\] là trung điểm của \(BC\) nên \[BM = \frac{{BC}}{2} = \frac{{R\sqrt 3 }}{2}.\]

Vì \[OM\,{\rm{//}}\,AH\] và \(AH \bot BC\) nên \(OM \bot BC.\)

Áp dụng định lí Pythagore vào \(\Delta OBM\) vuông tại \(M\) \(\left( {OM \bot BC} \right)\), ta có: \(O{B^2} = O{M^2} + B{M^2}\)

Khi đó \[O{M^2} = O{B^2} - B{M^2} = {R^2} - {\left( {\frac{{R\sqrt 3 }}{2}} \right)^2} = {R^2} - \frac{3}{4}{R^2} = \frac{{{R^2}}}{4}.\] Suy ra \(OM = \frac{R}{2}. & \left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \({S_{AEH}} \le \frac{{{R^2}}}{4}\).

Dấu xảy ra khi \[AE = EH\] nên \(\widehat {EAH} = 45^\circ \) hay \(\widehat {ACB} = 45^\circ \).

Vậy \[{\left( {{S_{AEH}}} \right)_{\max }} = \frac{{{R^2}}}{4}\] khi \[A\] thuộc cung lớn \[BC\] và \[\widehat {ACB} = 45^\circ .\]